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Outline

1. Background:

1 vertical element transport; reduced chimneys

2. Evidence for reduced chimneys

1 Over sulphides, kimberlites & “forest rings”

3. How reduced chimneys form

4. Implications

1 To: geochemistry; geophysics; hydrogeology: microbiology
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Clay Cover in Canada

A Very young: 8-12 kA

A Thick: 25 to > 50 m

1 Plastic / fully saturated
1 Extensive: >10° km?

A Very low permeability
(K > 1010 m/s)

vertical

¥ Highly stratified (promotes

horizontal dispersion)
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Problems With Vertical Element
Mobility Through Clay

@ Too slow: not enough time to develop
anomalies on surface since deposition

1 Why vertical? Horizontal stratification
would promote lateral dispersion
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Vertical Element Transport

It Is now clear that metals from buried mineralization
are making their way to surface through young
glacial clays

3 pH anomalies are coincident with metal anomalies

1 Carbonate mobilization / deposition Is related to the
PH responses

1 Vertical redox anemalies or “reduced chimneys”
occur In the surfical materials covering buried
features

1 The very strong spatial coincidence suggests the
phenomena are all genetically related to the same
process
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Reduced Chimneys

A “Reduced chimneys” are vertical zones In
overburden or groundwater that have lower redox
than surrounding areas

1 They were first postulated to occur (Hamilton,
1998) as a product of “redox-gradient” transport
of elements from buried mineralization to surface

1 The chimneys were first olsenved in 1999 over
“Forest Rings” and then in 2000 over mineral
deposits

Ontario
Geological
Survey



)
0
<C
S
L
(-
O
g
@
L

Marsh Zone Stratigraphy

Line 15 Marsh Zone

‘ * Piezometric Surface

44 * /s SN ¥

W)

o

o
1

N

O

@)
1

N

QO

o
]

N

00)

@)
1

280+

Mafic Metavolcanics

575- Talc-Chlorite Schist Quartz-Feldspar Porphyry
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Marsh Zone, Line 15 - 3D pH & Redox

Subsurface Redox (mV)

Boreholes

|
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Bedrock Geology and Mineralisation

Tale-Chlorite Schist Syenite-hosted Au Quartz-Feldspar  Mafic Metavolcanics
mineralisation porphyry
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Calcium concentration in peat plotted against pH
Marsh Zone Profile Data

Approximate position of sulphides

Relative Ca concentration (%)

Note: the typical background Ca concentration increases gradually
with depth from about 0.5% @ 5 cm to 2.5% (@ 60 cm.
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Cross Lake, Line 6 - 3D Redox & pH

Subsurface Redox of Saturated Clay
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Soll Slurry pH 6 m Below Water Table,
Cross Lake, Line 6

All Depths

above water table (3pt Avg.)
—— 1.5 m below water table
—— 3 m below water table
—— 6 mbelow water table

Distance South (m)
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pPH, Line 6, Cross Lake

VMS




Calcium — Line 6, Cross Lake

VMS




% CO, In B-Horizon Soll
Cross Lake, Line 6
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SP & Redox over Kimberlites
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Forest rings as evidence of reduced
chimneys
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Major-Element Geochemical Response
to a Wide Reduced Chimney

Relative Values Close to Water Table
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Reduced feature in bedrock

- Zone of Fe?* oxidation and H* production

Carbonate dissolution

[ ] Zone of carbonate deposition

— DIC & CO,

Hamilton, 1999; 2000
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Forest Rings - “Bean” Ring

Hamilton, Veillette & Komarechka, 1999
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Forest Rings - “Bean” Ring

Hamilton, Veillette & Komarechka, 1999
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ORP of Sediments, 2 m Depth
Thorn-North Ring
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ORP of Groundwater, 8 m Depth
Thorn-North Ring

-o= Sept 7, 2000 - Probe 3 (pumped, N2 purged, 4 day recovery)

—— Sept 21, 2000 - Probe 3 (measured on ) standing well water
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Water Table and Pieziometric
Surface — Thorn North Ring

NES T i Chasses SW-NE Line Crosses

[ 1Peat and / or Humus
' [_] Glaciolacustrine Beach and Shallow Lacustrine Sand
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Permeabllity of Sediments

—

o Cooper et al. method (confined aquifer)
e Hvorslev method (unconfined aquifer)
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Soll Gas Hydrocarbons

It has been discovered recently that
measurable responses exist in hydrocarbon
compounds In soils above mineral deposits

m Somewhat similar suites ofi hydrocarbons in
the pulped rock of the same deposits
suggested they might be originating from the
deposits

@ Another potential source of hydrocarbons IS
pacterial exhalation and biomass frem
Increased microbial activity over the deposit

Ontario
Geologica
Surve



1st Principal Component

Soll Gas Hydrocarbon — Thorn N.
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Soll Gas Hydrocarbon — Thorn N.
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Soll Gas Hydrocarbon — Thorn N.
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Soll Gas Hydrocarbon — Thorn N.
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Chemotroph Mt > ]
abundance e

Outside ring
(Oxidizing)

Outside ring
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Soll Gas Hydrocarbons




Soll Gas Hydrocarbons
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SGH & Redox
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SRBs - Cross Lake - 14 m from line
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SRBs - Cross Lake - 12 m from line
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Aerobic Heterotrophs - Cross Lake - 12 m from line
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Aerobic Heterotrophs - Cross Lake - 12 m from line
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Anaerobes - Cross Lake - 12 m from line
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Anaerobes - Cross Lake - 14 m from line
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ORP at Bean Ring - 1999
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Soll Gas Hydrocarbons over Kimberlites

Ontario
Source: Actlabs ggg\}ggucal



Bacterial Plate Counts

Green Mountain Kimberlite, Colorado

Streptomycetes

Bacillus cereus Total Bacillus
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The source of hydrocarbons

1 Hydrocarbon anomalies correlate with:
1 Mineralization (spatially)
1Reduced chimneys (spatially)
1Redox variation
1pH anomalies In soil
1(O, depletions / CO, enrichments in soll gas)
1(Organic carbon depletions)
1(Metal enrichments )

1|ncreased bacterial populations
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The source of hydrocarbons

A Conclusions:

1.

Source of hydrocarbons Is bacterial biomass and
microbial exhalation above the reduced chimney

Increased hydrocarbons result from increased
microbial activity

Increased microbial activity results from enhanced
redox gradients and a greater availability of
essential nutrients over the chimney.
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The Formation of Reduced Chimneys
by Electrochemical Transport

Reduced chimneys could conceivably form by:

1 Gaseous dispersion

1 Fluid movement

a1 Diffusion

3 Electrical field transport

1 (Redox gradient transport)
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Reduced Chimney Development

(A) Post overburden deposition

™ Reduced feature in bedrock

Hamilton, 1998
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Reduced Chimney Development

B Progresswe advancement of redox front

Hamilton, 1998
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Reduced Chimney Development

Hamilton, 1998



Charge & Mass Transport
R —

\ —

Jj = < / >
V Diffusi\; term Velocity (advection)
Electromigration term term

] = species “j” ¢ = Voltage (electrical field)

D = Diffusion coefficient K = hydraulic conductivity

C = Concentration H = hydraulic pressure

Z = valence (of j) N = porosity (of porous

F = Faraday’s constant medium)
R = ideal gas constant Jj = flux of species “J” in the X
direction

T = temperature

Nernst-Planck _
. - @ 822?(r)|8ical
(I.e. general mass transfer) Equation (§) geals



Problems with Redox Transport

(and models of Veder, Bolviken, Govett, Pirson, Tomkins, and Hamilton)

1 Movement of charge and mass due to
a redox gradient Is not supported by
physics

1 |ntervening oxidized strata should

short-circult the charge transfter
pProcess
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ORP (mV)
-250 -50 350
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Sulphlde Dipole (Hamilton, 1998 after Govett)

Problem:

Doesn’t explain
responses that occur
over non-conductive
oxidizable features

eo objeyos aAjIsod

— Electrical field lines
- Negative current flow

200 Redox Equipotentials (mV)
= lon movement
é Electron flow
[| Sulfide

@  Anode
© Cathode

so1oads bul
'] I |
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SP Surveys
over
Porphyry
Sulphides

Little Cottonwood
Canyon, Battle
Mountain Nevada

Self potential (mV)
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10 13

Valmy Fmt.
(Graphite with
some sulphides)

SP surface deposit

Big Ben Mt.

Corry, 1985, Fig. 4
(Note: mV/2)

From Corry (1985), Fig. 1

From Corry, 1985



Spontaneous Polarization of
Sulphide Deposits (corry, 1985)

Problem:

I Permanent polarity

means folded or

overturned deposits Ground Surface
should exhibit positive

poles on surface
(which never happens)

I Can’t account for
non-metallic targets

I Cannot allow for
mass or charge
movement — system is
static

Simplification of model of Corry (1985) Ontario
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Redox-Induced Spontaneous Polarization

Surface
Response

—— Water Table

«— Redox
equipotentials

Electrical field
i lines

Polarity of redox-
active ions

®)0Negative

Positive




Spontaneous Polarization over a Shallow
Reduced Feature

Distance—»

Ground
Surface

Polarity of
constituent atoms

V)
@” Negative

Positive

Shallow reduced feature
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Implications to Geophysics (electrical)

SP occurrence over ore deposits Is currently not understood,
has no governing equation and therefore cannot be modelled

That which cannot be modelled does not exist

Redox-induced spontaneous polarization (RISP) could
account for SP over redox-active conductive and non-
conductive features

It Is compatible with most of the previously published models
— each of the earlier models are describing different parts of
the same process

Explaining the origins of SP Is the first step in development of
an equation, which would' allow modelling of SP; a
resurgence in the use ofi SP as a geophysical exploration
tool; and will help to focus geochemical sampling In more
advantageous areas.
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Implications to Hydrogeology

By Darcy’s Law the groundwater bulges and depressions
associated with the redox boundaries cannot exist

The piezometric and chemical data, particularly for the rings
Indicate large-scale mass and charge flux that is due neither
to advection nor diffusion

Almost all advective-dispersive models that are used for
contaminant transport modelling consider only advection and
diffusion in solute dispersion

These models are most often used to model the transport of
landfill leachate and the containment of nuclear waste, both
of which materials are highly redox active. Aniadditional
transport mechanism based on redox gradients would
obviously have important implications to the validity ofi these
models.
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Implications to Microbiology

Evidence of microbiological processes Is ubiguitous
over the rings, kimberlites & sulphides

Over the sulphides and rings we see production of
hydrocarbons that correlates with negative redox
and elevated bacterial counts

At the edges of various rings we see very sudden
changes in geochemistry and redox that are almost
certainly due to microbial action

These appear to be the same processes that occur
around deep-sea vents, brine-poeols and gas
hydrates but are much more accessible andi less
expensive to study
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Implications to Geochemistry

3 The data shown here uniguely demonstrate a link
between microbiology, geochemistry, geophysics

and hydro
3 Some oft

geology
nese links have been apparent for years

but there has recently been a huge increase in our

ability to o
analytical
a critical i

uantify them, thanks in part to new
technigues and the discovery of redex as
nk In the processes

1 We now face a new geochemical paradigm, which
we can best exploit for mineral exploration; ifi we

focus on understanding WhY: responses happen on

surface In

addition to knowing where they happen
\We also need more people
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Plastic

| VfWell Casing

Platinum
Spontaneous

Cu-CuSO, Surface Potential
Stationary Electrode ? ( PtS P)

¥1) = SPp = electrical field
@ = ORP g0, = redox /
¥3) =PtSP = total field

V1 +V2=V3 1

(Timm & Moller, 2001) Cu-Cus0,

. 4

Mobile Electrodes
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Redox Gradient-Induced Flux @olviken

Earth’s Surface

Problem:

Movement of charge and
mass in a redox gradient is
not supported by physics
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Positive Charge Carriers
H, ,<d®<c®<b®<a®<0,

Negative Charge Carriers
H, <DE<Co<BE<AS0,

2(g)

Increasing Eh
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Bolviken & Logn, 1975 Earth’s Lower Crust
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Theory of Electrotelleric Currents Over

an Oll Reservoir

Problem:

! Electrons cannot
move freely in an
aqueous medium

! No mechanism
was given for the
iInduction of ionic
current except redox
differences between
surface and depth
(which is contrary to
physics)

From Pirson, 1981



ORP & pH
of
Sediments

—— Slurry ORP (P1, @5 min)
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PH of
Groundwater
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Carbonate Mobillity (Cheecka Ring)
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Implications to Microbiology

Evidence of microbiological processes is ubiguitous over the
rings, kimberlites & sulphides

Over the sulphides and rings we see production of
hydrocarbons that correlates with negative redox and
elevated bacterial counts

At the edges of various rings we see:
1 very sudden rise in SO,* and drop in H,S & O,
suggests sulphide oxidizing bacteria

I  OR an increase in iron and sharp drop in pH
— suggests iron oxidizing bacteria

1 sharp increases in methane at ring edge
— suggests CO, consuming methanogenic bacteria

1 rapid reversal of redox with rise in water table
— suggests facultative bacteria such as SRBs & Fe oxidizers

These appear to be the same processes that occur around
deep-sea vents, brine-pools and gas hydrates but are much
more accessible and less expensive to study.
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