Lithogeochemical Halos: VHMS and SEDEX

Ross R. Large Centre for Ore Deposit Research (CODES) University of Tasmania

Use of alteration Lithogeochemistry in Exploration

- VHMS deposits (AMIRA P439)
- SEDEX deposits (AMIRA P384 & 384A)

CODES-AMIRA VHMS Alteration Project

- 3 years
- 11 industry & government sponsors
- 8 staff & 9 PhD/MSc students
- Regional and deposit scales

Rosebery Cu-Zn-Pb: Alteration Zonation

Hellyer Zn-Pb-Cu -Alteration Zonation

The Alteration Box Plot for VHMS Systems

- Based on the Ishikawa alteration index developed for Kuroko deposits
 - elements added by alteration chlorite & sericite alteration
 - $AI = 100(MgO+K_2O)$ $(MgO+K_2O+Na_2O+CaO)$

elements subtracted by alteration

• Varies from ~40 (unaltered) to 100 (altered) plagioclase & glass

Other VHMS vector

- Chlorite-carbonate-pyrite index: CCPI
- Measures the intensity of these proximal alteration minerals
- $CCPI = 100(MgO+FeO^*) \\ (MgO+FeO^*+Na_2O+K_2O)$
- Enables the separation of chlorite, sericite and carbonate alteration.

VHMS Alteration Box Plot Large, Gemmell, Herrman, Paulick & Huston (2001)

Least altered volcanics Mt Read Volcanic Belt

Example; Thalanga VHMS

Advantages of alteration vector plots

Simple to apply
Defines least altered rocks
Relates geochemistry to mineralogy
Shows alteration trends
Defines very weak alteration
Distinguishes hydrothermal alteration from diagenetic and metamorphic "alteration"

Best Halos and Vectors

- Ishikawa AI
- Mn
- · S/Na₂O
- Ba/Sr
- TI and Sb

Increasing size

Rosebery thallium halo

Thallium and Antimony Halos

very useful vectors for polymetallic VHMS deposits

Thallium and Antimony Halos

• Up to 100ppm Tl and Sb proximal to ore and 1–10 ppm within halo zone

 Sb and Tl halo within favourable horizon and extending vertically and laterally into hangingwall

Tl (> 1 ppm) up to 50 m
 into HW and FW and along
 favourable horizon

Zn-rich Polymetallic VHMS Deposits

Halos and Vector Diagrams for SEDEX Systems (AMIRA P384)

- Based on research at Lady Loretta and HYC
- Controlled by the change in chemistry of carbonate minerals as you approach the orebody.
- Dolomite -> ferroan dolomite -> ankerite -> Mn-siderite -> Zn-Pb ore

Fe-Mn-carbonate halo model

Siderite halo in siltstone host rocks

Sedex Zn-Pb-Ag footprint of overlapping halos

HYC 240 Mt

Thallium halo + heavy Oxygen & Sr isotopes Ankerite-ferroan dolomite halo (± siderite)

ORE

Mn-carbonate halo

Key Vectors

- SEDEX AI₃ = $100(FeO^*+10MnO)$ (FeO*+10MnO+MgO+Al₂O₃)
- MnO_d = $MnO^*40.03$ (MnO content in dolomite) <u>CaO</u>
- TI, C/O isotopes in carbonates, Sr isotopes

SEDEX Vector Plots

Mn content in carbonate

SEDEX Vector Plots

SEDEX AI

Vector plots for SEDEX

C-O isotope halos at HYC

A Oxygen isotope halo

B. Carbon isotope halo

Initial ^{87/86}Sr range

C-O isotope halos at HYC

A Oxygen isotope halo

B. Carbon isotope halo

Thallium- Sr isotope halo

- Sedex AI > 50
- MnO_d > 1.5 wt%
- TI > 4ppm
- $\delta^{18}O$ > 22.5 permil
- $\delta^{13}C < -2$ permil
- $\frac{87}{86}$ Sr > 0.7200

