

The Use of Mass Loading Studies to Identify Sources of Trace Metal Inflow to Streams Affected by Historical Mining— A Potential Exploration Tool

> by Katherine Walton-Day Briant A. Kimball Robert L. Runkel

Creede Mining District, Colorado, USA

Presentation Outline

- Why detailed sampling?
- Loads versus concentration
- Mass-load studies and the injection/synoptic sampling method
- Load calculations
- Examples of anomalous findings
- Summary

Traditional view of a watershed

 Reconnaissance •"Integrator" site -Chemical Weathering -Loads and seasonal variation -Processes on a watershed scale Long-term monitoring •Trends Anomalous watershed **ZUSGS**

What are the questions for massloading analysis?

- Where are the greatest sources of loading occurring?
- Are there ground-water sources of metal loading?
- Are there multi-element sources of groundwater loading to the stream?
- Are there ground water sources of indicator elements to the stream?

Confluence of Cement Creek and the Animas River, Animas River Basin, Colorado, USA

What if our questions are about sources within a watershed?

- Usually a lot of chemical data on possible sources
 - "Site by site"
 - Regional geology
- Integrator site cannot answer questions about relative importance
- Little information on stream flow (discharge)

What do we need to know?

- What sources are the most significant?
- Need spatial detail at specific locations
- Divide stream into segments and sample inflows
- Watershed characterization
 - Geology and structure
 - Deposit types
 - Hydrology
 - Chemistry and location of inflow to stream

Why do we need loads for "ranking" sources?

Not always the highest concentration

Mass-Loading Studies: The Method

• Walk the stream

- Inject salt (for hydrology, streamflow)
- Collect synoptic samples
- Calculate streamflow
- Calculate loads
- Calculate relative loads

Walk the Stream

- Fe,Al, or Mnrich seeps
- Fe-"Bogs"
- Flocculent
- Ferricrete
- Faults, sheer zones
- Map geology

Why use a tracer for streamflow?

- Total (stream + hyporheic) flow for mountain streams
- Collection of many samples for watershedscale synoptic sampling
 - Locate anomalous inflow
 - Evaluate premining baseline conditions
 - Evaluate remediation options

Tracer (salt) Dilution

Adding the salt

- Continuous Injection
 - Not a "slug"
 - Long enough for steady state
- Carefully metered pump
 - Counting revolutions with data logger
 - Adjusts voltage
 - Constant per two minute period

Tracer injection – Temporal view

Tracer (salt) Dilution

Temporal Profile

Spatial Profile

Synoptic Sampling

Load calculations --Look at change between sites

$M_s = QC$

$\Delta M_s = Q_B C_B - Q_A C_A$

Working the data Sampled Instream Load

Sampled Instream Load

- 1. "Basic data" from the study
- 2. Shows increase and decrease of load

Load calculations --Look at change between sites

 $\Delta M_{S} = Q_{B}C_{B} - Q_{A}C_{A}$

Cumulative Instream Load

$$\Delta M_{S} = Q_{B}C_{B} - Q_{A}C_{A}$$
$$\sum +\Delta M_{S}$$

Trib	Site	Dist	Zn	Q	Load	∆ Ms	Instream
0	A	0	1.00	5.00	5.00		
0	В	25	1.00	5.50	5.50	0.50	5.50
1	Т	30	1.50	2.00	3.00		
0	С	35	1.20	7.50	9.00	3.50	9.00
1	S	40	1.50	2.00	3.00		
0	D	45	0.84	9.50	8.00	-1.00	9.00
0	Е	55	1.04	11.5	12.00	4.00	13.00
0	F	75	1.00	12.0	12.00	0.00	13.00

≥USGS

Cumulative instream load

- 1. Cumulative sum of positive
- 2. Best estimate of total load to stream

Load calculations --Cumulative Inflow Load

 $\Delta M_I = C_T (Q_C - Q_B)$ Upstream from Injection site, injection site, pump mass flow: Tributary load: between sites B and C. CPQP $M_A = C_A Q_A$ "inflow" load: $\Delta M_{l} = C_{T}(Q_{C}-Q_{B})$ T(QB - QA)**Diffuse ground water** Downstream. from injection site, upstream GW from inflow: $M_B = C_B Q_B$ S Downstream from inflow. change in instream load: $\Delta MS = C_C Q_C - C_B Q_B$ Seed Downstream site, change in instream load: $\Delta Ms = C_D Q_D - C_C Q_C$ Downstream site. change in instream load: $\Delta M_S = C_E Q_E - C_D Q_D$

Cumulative inflow load

$$\Delta M_I = C_T (Q_B - Q_A)$$
$$\sum \Delta M_I$$

Trib	Site	Dist	Zn	Q	Load	Ms	Instream	Mi	Inflow
0	A	0	1.00	5.00	5.00				5.00
0	В	25	1.00	5.50	5.50	0.50	5.50		5.00
1	Т	30	1.50	2.00	3.00				
0	С	35	1.20	7.50	9.00	3.50	9.00	3.00	8.00
1	5	40	1.50	2.00	3.00				
0	D	45	0.84	9.50	8.00	-1.00	9.00	3.00	11.00
0	Е	55	1.04	11.5	12.00	4.00	13.00		11.00
0	F	75	1.00	12.0	12.00	0.00	13.00		11.00

≊USGS

Cumulative Inflow Load

Cumulative sum of inflow load
Best estimate of sampled load

What did we get?

- Which sites cause the greatest loading (watershed view)?
- Are there ground-water or "non-point" sources of metals (watershed and site characterization)?
- Are changes due to chemical reaction (natural attenuation) or to dilution?

Little Cottonwood, Utah

1. Sharp increase \rightarrow distinct sources

 Vein deposits

 Mine tunnels
 Bulkhead

Mountain leaking

DISTANCE, IN METERS

Cement Creek, Colorado

Broad increase → regional alteration
Unsampled versus sampled inflow

Watershed-scale comparison -- Zinc

 Surface water
versus
ground
water

Integrating the geologic sources

- Mineral Creek, Cement Creek, Colorado
- Loadings are tied to geologic sources
- Alteration zones
 - Acid-sulfate zone
 - Quartz-sericite-pyrite
 - Propylitic alteration

Alteration map by Dana Bove (USGS)

Watershed-scale comparison – Multielement

Watershed characterization is integrated in the stream

- Results are a "road map" for potential followup work
- Trace-metal-rich ground water inflows indicate mineralized or altered zones, or hydraulically conductive fractures that intersect such zones
- Construct flow paths from metal-rich inflows to sources
- Overlay maps of geology, fractures, alteration, geophysics, then drill....

Caveat Emptor!!

- Method has not been tested for exploration
- Method is not a "Stand-Alone" technique: part of an "Integrated" (geology, structure, hydrology, etc.) investigation
- Special considerations needed for loosing streams, or streams with loosing reaches

Summary

- Mass-loading studies (hydrogeochemical technique)
- Results can locate ground-water input to stream (single-element, multielement, indicator elements)
- Combined with other data (geology, geophysics) may help locate deposits
- Premining baseline and water-quality assessment

