

PERFORMANCE OF WASTE ROCK COVERS – RUM JUNGLE

G.F. Taylor, A. Spain, A. Nefiodovas J. Bennett, G. Timms, V. Kuznetsov

Mining Activities at Rum Jungle

Location map for the Rum Jungle minesite

Cho

RUM JUNGLE MINE

- Mined for uranium and copper 1952-1971
- Three open-cut mines on site
- Other small mines within 10 km
- Four waste rock dumps
- Three open pits
- TSF
- Heap leach piles
- Acid dam

CSIRO Environm entalProjects Office

RUM JUNGLE MINESITE PRIOR TO REHABILITATION

WHITE'S OVERBURDEN HEAP

7.1 mt; 26.4 ha; 4 x 10⁶ m³

Consists of shales and slates with minor dolomite

Main sulfide is pyrite

 $IOR = 1.3 \times 10^{-8} \text{ kg} (O_2) \text{m}^{-3} \text{ s}^{-1}$

Left for 26-30 years prior to covering

REHABILITATION

REHABILITATION

REHABILITATION

eno

MONITORING Instrumentation Water quality in Finniss River Water infiltration rate **Oxidation rates** Vegetation **Erosion** Weeds Wildfires

WATER INFILTRATION

20

CSIRO / ANSTO RESEARCH

To ascertain what factors led to a deterioration in performance of the cover on White's overburden heap

Field observations Field tests Laboratory tests / analyses

End of 'wet' season – April 2002 End of 'dry' season – October 2002

CSIRO / ANSTO RESEARCH

Field tests

RESULTS

Vegetation

Cover characteristics

- surface: litter, cryptogams, stoniness, macropores, micro-relief, termite mounds, erosion
- profile: thickness, layer properties, depth distribution of roots, infiltration, oxygen flux

Laboratory testing

 moisture content, particle density, bulk densities, void ratio, saturation, dispersivity, liquid and plastic limits, shrinkage, particle size analysis

Laboratory analyses

mineralogy, composition, leachate composition

DISCUSSION

Design:

Low permeability to reduce infiltration to <5% incident rainfall

Well drained with no ponding

Erosion resistant

Minimum thickness compatible with performance objectives

Simple construction using local materials

CSIRO Environm entalProjects Office

Construction / Materials

Water-shedding / erosion prevention features satisfactory

Zone 2A much thinner than specified

Some materials fell outside specified designed limits

Insufficient material meeting specifications

Tests indicated Zone 1A material would shrink during 'dry' season

Physical / chemical changes

Minimal erosion or slumping

Bare patches have been acid burned (pH=3.7)

Pedological changes

Zone 2A has cloddy structure penetrated by roots and termite / ant galleries

Zone 1A developed polygonal blocky structure with coarse material in voids

Biological changes :

Root penetration into waste rock

Termite / ant galleries

Both have increased permeability

Future biological development dependent on plant communities

Native species adapted to prevailing conditions will replace agriculture species

Oxygen flux

Cover reduces oxygen flux to 20% - 23% of exposed bare rock

Reduction proportional to cover thickness

Flux 4x higher at end of 'dry' season

Difference due to moisture content

CONCLUSIONS:

Storage-release, water-shedding design appears appropriate

Cover design based on material availability and cost not necessarily appropriate

Adequate supervision and quality control essential during construction

Monitoring instrumentation installed during construction necessary to determine performance

CONCLUSIONS (cont.)

Colonisation by termites (and ants) is inevitable

Cover design must accommodate their impact on soil hydraulic properties

Penetration by roots probably unavoidable – impact presently unquantifiable

Oxygen flux limited by covers

RECOMMENDATIONS

Detailed modelling using characteristics of available materials essential

Make allowances for changes in permeability

Comprehensive testing / analysis of potential cover materials

To reduce long-term maintenance, cover should be planted to native flora

Consideration of capillary break

CSIRO Environm entalProjects Office