

Geochemical Data Evaluation and Interpretation

Eric Grunsky Geological Survey of Canada

Workshop 2: Exploration Geochemistry – Basic Principles & Concepts Exploration 07 8-Sep-2007

Outline

- What is geochemical data?
- The Basics of how geochemical data is evaluated.
- Case Studies:
 - Levelling geochemical survey data
 - Lithology/Alteration/Mineralization signatures in metavolcanics
 - Multivariate geochemical signatures & topography in the tropics.
- Concluding Remarks

Goals of Geochemical Data Analysis

- Detect inter-element relationships of geochemical data reflect that mineralogy or chemical species interactions and describe or infer geological processes.
- I solate atypical observations or groups of observations that are potentially identified with processes of interest (mineral deposit, hazardous environment).
- Pattern recognition is a key concept in data analysis.

Geochemical Data Processing & Visualization

Evaluation of Geochemical Data

- Variable Space
 - Statistics and Data visualization. Numerous graphical and statistical methods characterize the variables.
- Geographic Space
 - Geographic representation of data using Geographic Information Systems (GIS) or I mage Analysis Systems
 - Geostatistical Analysis spatial processes.

Geochemical Sample Media

- Choice of sample media reflects different processes.
- Method of sample preparation affects analytical results.
- Method of instrumentation affects analytical results.
- Spatial density (support) affects the ability to detect various processes.

Measures of Geochemical Data

- Common practice to express major elements as weight % oxides (e.g. SiO2).
- Trace elements commonly expressed as parts per million (ppm).
- Mixing major element oxides with elements reported without oxides is not a good idea (scale differences).
- Convert to moles and then evaluate.

Ideal Distribution of Elements

The True Nature of Distributions

Univariate Exploratory Approach

- Histograms
- Ranked data
- Q-Q plots
- Density plot
- Summary tables

A "near perfect" distribution.

Typical Distribution

Summary Table

_																		
Summary	Statistics	for Lake S	ediments, E	Batchawa	na Area, O	ntario												Coefficient of
	LLD	Num Obs	Minimum	1%	5%	10%	25%	50%	Median	Mean	75%	90%	95%	99%	Maximum	Std.Dev.	MAD	Variation
LOI	2.96	3019	3	35.5	40.11	40.5	43.94	49.5	44	44	53.5	56.535	57.25	57.5	91.5	13.7	13.3	0.3
Ag	0.2	2900	0.2	0.2	0.2	0.2	0.2	0.3	0.5	0.7	1	1	1	1	72	1.5	0.4	2.3
ΑĬ	0.36	3047	0.4	1.385	1.955	2	2.19	2.22	2	2.5	3	3.5	3.5	4.17	8		1.4	0.5
As	0.5	3046	0.5	0.85	0.9	1	1.25	1.3	1.2	2.2	1.5	1.5	2	2	96	4	0.4	1.8
Au	1	3042	1	1	1	1	1	1.5	1	2.1	2	2	2.5	4	64	2.1	0	1
Ва	30	3047	30	132	156.5	160	160.5	175	148	167.8	178.5	195	235	295	680	85.2	71.2	0.5
Be	0.5	3047	0.5	0.5	0.5	0.5	0.5	0.75	0.5	0.8	1	1	1	1	54.1	1	0	1.3
Bi	2	3047	2	2	2	2	2	3	2	2.9	5	5	5	5	10	1.4	0	0.5
Br	1	3046	1	3.4	14.5	17.45	18.05	31	22	25.6	34.5	37.95	43	57.5	132	16.1	14.1	0.6
Ca	0.23	2685	0.2	0.71	0.805	0.87	0.915	1	1	1	1	1	1	1.08	9.1	0.4	0.1	0.4
Cd	0.2	3047	0.2	0.3	0.45	0.5	1	1	1	1	1	1.05	1.1	1.5	6	0.6	0.3	0.5
Co	1	3047	1	4	4.5	5	5.5	5.5	6	6.9	6.5	6.5	8	10.5	105	5	3	0.7
Cr	1	3047	1	18	25.5	26	31.5	32	27	31.3	32	41	41.5	47.5	328	18.2	13.3	0.6
Cu	2	3047	2	13	17	21	23.5	28	29	34.2	31.5	37.5	44	45.5	441	24.3	14.8	0.7
Fe	0.14	2649	0.1	0.4	0.45	0.965	1	1.5	1	1	1.5	1.5	1.505	1.745	15		0.3	0.7
Hf	1	3046	1	1	1.5	2	2	2.5	2	2.3	2.5	2.5	3.5	6	30	1.4	1.5	0.6
K	0.05	1809	0.1	0.19	0.265	0.33	0.37	0.425	0.3	0.5	0.56	1	1	1	2	0.3	0.3	0.7
La	1	3046	1	13	20.5	27	27	31	25	29	38	44.5	50	50.5	408	19.3	13.3	0.7
Lu	0.1	1605	0.1	0.15	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.25	1	2	0.2	0	0.7
Mg	0.04	1636	0	0.09	0.095	0.1	0.15	0.28	0.2	0.3	0.285	0.305	0.31	1	2	0.2	0.1	0.9
Mn	20	3047	20	76	89	97.5	101.5	126.5	114	159.8	134	142.5	160	309.5	3410	168	77.1	1.1
Mo	1	3047	1	1	1.5	1.5	1.5	2	2	2.3	2.5	2.5	2.5	3	84	3.2	1.5	1.4
Na	0.03	1999	0	0.17	0.355	0.44	0.52	0.935	0.5	0.7	1	1	1.055	2	4	0.5	0.5	0.8
Ni	3	3047	3	11.5	12	15	15.5	16.5	16	17.3	18	19.5	22.5	29	153	7.9	5.9	0.5
Р	150	2197	150	300	515	650	825	830	820	941	970	1060	1105	2315	4700	508.6	474.4	0.5
Pb	2	3047	2	7	8	10	11	12	10	11.6	13.5	14	16	17	1340	27.3	5.9	2.4
Sb	0.1	1627	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.15	0.15	0.2	1	7	0.3	0	1.8
Sc	0.1	3046	0.1	2.6	4.5	5.35	5.4	6	5	5.2	6.35	6.5	7.5	7.5	19		1.5	0.4
Sr	12	3047	12	48	50	60.5	66	66	60	78.3	94	109.5	117	170	427	54.3	34.1	0.7
Та	0.5	3046	0.5	0.5	0.5	0.5	0.5	2	2	1.4	2	2	2	2			0	0.5
Th	0.4	3044	0.4	1.9	2.4	2.5	3.25	3.3	3	3.3	3.65	4.5	5.5	- 8	26		1.5	0.5
Ti	0.009	1557	0	0.03	0.0495	0.0565	0.06	0.06	0.1	0.1	0.076	0.105	0.121	0.255	0.3		0	0.5
U	0.1	3009	0.1	1.9	2.3	2.5	2.65	2.95	2	4.2	4.1	4.5	5	18.5	195.5	7.5	1.5	1.8
V	5	3047	5	11	18.5	22.5	24	24.5	24	27.1	27.5	37	41	45.5	301	15.9	13.3	0.6
W	1	3046	1	1	1	1	1	1	1	1.7	1	1.5	1.5	2			0	1.1
Zn	13	3047	13	52	62.5	63.5	75.5	98	86	98.6	102.5	114	116.5	145	952		38.5	0.7

Comparative Boxplots

Multivariate Exploratory Approach

Multivariate

- Principal components
- Independent Components
- Multi-dimensional scaling
- Cluster analysis
- χ^2 plots
- Empirical Indices (NUMCHI,

SCORESUM)

CHI*-6X, PEG-4, Weighted Sums,

Modelled Approach based on Target and Background Populations

Groups chosen from exploratory analysis & orientation studies

- Canonical Variate Analysis
- Posterior Probability/Typicality
- Neural Networks / Self Organizing Maps / Random Forests / Support Vector Machines

Special Problems

- Censoring samples < detection limit replacement,
- Non-normal distributions that hamper statistical testing – transformations,
- Missing values and zeros replacements,
- Different limits of detection and instrumentation levelling,
- Constant sum (closure) problem Logratio analysis.

Transformations

Transformations are useful to:

- Scale the data in order to view subtle features and minimize the effects of outliers,
- Apply statistical tests (i.e. log-ratios)

Transformations

Exploratory Data Analysis & **Transformations**

Lake Sediments - Logcentred

Robust Statistics

 Presence of extreme or atypical values in a sample population can have a dramatic effect on the estimation of the mean and variance.

Univariate Methods	Zn				
Mean	89				
Robust Estimate (Huber M Estimator)					
Univariate Median					
Mode	65				
Multivariate Methods					
Minimum Volume Ellipsoid					
Minimum Covariance Determinant 800 observations					
Minimum Covariance Determinant 540 observations	73				

Multivariate Visualization Quantile-Quantile Plots

Ressources naturelles Canada

Multi-element Relationships Pairs Plots

Spatial Evaluation Bubble Plots

Adequate Support -Spatial Analysis

- Spatial Structure Fe Lake Sediments
- Adequate sampling density (support)

Semi-variogram Correlogram ρ Distance Distance

Spatial Presentation

Interpolated I mage

Spatial Analysis and Anomaly Recognition Using Fractals

Compositional Data

Quartz	Feldspar	Biotite	Total
Quantz	i cinshai	Diotite	TOLAI
15	80	5	100
20	70	10	100
25	60	15	100
30	50	20	100
35	40	25	100
40	30	30	100
45	20	35	100
50	10	40	100

Compositional Relationships

Compositional Data - Logratios

Aitchison (1982) described the use of logratios as a way of overcoming the problem of compositional data for statistical analysis.

Logratio

• $y_i = \log(x_i/x_D)$ (i = 1, ..., D-1)where $x_D = a$ compositional component of choice Centred Logratio

$$z_i = \log(x_i/g(x_D)) \ (i = 1, ..., D),$$

where $g(x_D)$ is the geometric mean of the composition

Assessing the Entire Composition with Multivariate Methods

Pearce Element Ratios

- PER's are based on the "preservation" of a constituent within a magmatic system.
- It is the relative change of a constituent w.r.t another constituent that describes compositional variation.
- $y_i = x_i/x_j$ (where x_j is the preserved constituent and i = 1, ..., D-1)
- The analysis of y_i (i = 1, ..., D-1) is more likely to define compositional variation related to stoichiometric processes.

Levelling Geochemical Survey Data

Levelling Geochemical Survey Data

> 35 elements Batchawana Greenstone Belt

3047 Sites

Parametric Levelling Scenarios Cr - Lake Sediment Surveys

Quantile Interval=0.05

Comparative Boxplots for Levelling

Zn in Lake Sediments Batchawana Area

Levelling Equation Quantile Linear Regression

Zn in Lake Sediments after levelling

Multivariate Methods

- In many surveys a number of elements may be important.
 - Commodity elements
 - Pathfinder elements
 - Background characterization
- There are many methods to evaluate multielement geochemical data.

Empirical Methods

- Weighted Sums a choice of specific elements that define a process of interest. Weights are assigned in terms of importance
- SCORESUM a score is given for each element that exceeds a predetermined threshold (i.e. if 6 elements exceed their respective thresholds, the SCORESUM value is 6)
- Specific Indices
- CHI -6*X= As + 3.56xSb + 10xBi + 3xMo + 30xAg + 30xSn + 10xW + 3.5xSe
- Mahalanobis Distance Plots (X^2 plots) multivariate equivalent of a quantile-quantile plot.

X^2 Plot

The Mahalanobis distance is defined as:

$$D^2 = [\mathbf{X} - \overline{\mathbf{X}}]' C^{-1} [\mathbf{X} - \overline{\mathbf{X}}]$$

Where:

- x is a vector of variables for the observations,
- \overline{x} is a vector of the group mean,
- C⁻¹ is the inverse of the covariance matrix.

Chi-square Plot

SCORESUM

Principal Components Analysis

- A multivariate method based on the correlation/covariance of groups of elements.
- Based on correlations linear combinations of elements can be extracted that are orthogonal (independent of each other).
- Each successive component accounts for less of the overall data variation.

Metavolcanics & Mafic Intrusions

Metavolcanics & Mafic Intrusions

Principal Components Analysis Metavolcanics & Mafic Intrusions

Mapping Volcanic Stratigraphy, zones of alteration and mineralization

Ben Nevis Metavolcanics Principal Components Analysis

Ben Nevis Metavolcanics Principal Components Analysis

Ben Nevis Metavolcanics Principal Component 1 Log-centred Data

Ben Nevis Metavolcanics Principal Component 2 Log-centred Data

Ben Nevis Metavolcanics Principal Component 3 Log-centred Data

Ben Nevis Metavolcanics Principal Component 4 Log-centred Data

Soil Sediment Geochemistry in a Tropical Environment

Geology of the Area

Granodiorite

Hydrothermal Breccia

Up to 7.5 g/t Au.

Sample Spacing
25m along lines
100 m between lines

Soil Geochemistry Principal Components Analysis

PC1

PC2 - Cu Mineralization

Soil Geochemistry PC1 over Topography

Soil Geochemistry PC1 over Topography

Soil Geochemistry PC2 - Cu Signature

Software for Geochemical Data Analysis

- Desktop statistical and mapping packages are common today.
- Many public domain and commercial packages available for geochemical data analysis.
- See Exploration 2007 proceedings.

Software for Evaluating Geochemical Data

- Evaluation of data in the spatial and variable domains are currently separate.
- GIS and Geostatistics packages are best for the spatial evaluation.
- Statistical packages best for the variable domain.

Software ...(cont'd)

- The R Project for Statistical Computing (www.rproject.org) provides a comprehensive environment for evaluating data.
- Specific packages include:
 rgr (The GSC Applied Geochemistry EDA Package)
 gstat (geostatistical modelling, prediction and simulation)
- Other packages (cluster, fastICA, MASS, e1071, kohonen, nnet, randomForest)

Some Comments

- To Assess/Intrerpret multi-element geochemistry:
 - Data analysis methods (exploratory),
 - Statistical methods (modelling),
 - Visualization in the variable and geospatial domains,
 - Geographic rendering in 2, 2.5 and 3 dimensions.

In Conclusion....

From Mess to Message

Get to know your data

There are a wealth of tools available to investigate and evaluate.

Use them all!

