

Plants: The Ultimate Selective Leach

Colin E. Dunn
Consulting Geochemist
Sidney, BC

Sample the Trees or Shrubs

"Biogeochemistry" (Phytogeochemistry)

Biogeochemistry and Geobotany

GEOBOTANY

Plants associated with minerals

<u>Visual approach</u>

BIOGEOCHEMISTRY

The chemical composition of plants

Chemical Approach

Poison Milkvetch

(Astragalus pattersonii)
Colorado

Selenium indicator plant

Used in U roll-front Exploration (Cannon, 1960)

Photos: Mary Ellen (Mel) Harte

Exploration 07

Fireweed (Epilobium)

BIOGEOCHEMISTRY

Technology to Discover Mineralization and Define Underlying Geology

To better target

BIOGEOCHEMISTRY

The chemical composition of plants

OUTLINE

- Why
- How
- Results

Use Plant Chemistry for:

- Delineating stratigraphy
- Delineating structure/faulting
- Outlining mineralization

RATIONALE Why use plants?

Power of Plants

- Complex 425 million years
- Sophisticated abilities to select elements that they need
- Tolerate metals they don't need
- Store those they don't need (often in extremities such as bark and twig ends and tree tops)

Earliest form of vascular plant — Cooksonia Lower Silurian (~425 my)

Precambrian Life

- Bacteria
- Fungi
- Algae

Metals in Primitive Life Forms (Lepp, 1992)

Concentrations (%)		
	Bacteria	Fungi
Cd	40	3
Co	25	
Cu	40	1.6
Pb	49	10.4
Ni	13	
Ag	35	5.4

'Barrier' Mechanisms

(i.e. a type of selective extraction [leach] of elements)

Correlations: Bark v. Soil Horizons

Soil Horizon	Douglas-fir Bark n = 12		Engelmann Spruce Bark n = 13	
	Au	As	Au	As
Forest Litter	.13	.10	.48	.58
A - Horizon	.63	.63	.65	.65
B - Horizon	.60	.55	.79	.80
C - Horizon	.76	.64	.90	.88

Relationships between the Organic world of Plants and the Inorganic world of Rocks

Trees

 Extensive root systems – roots, rootlets and mycorrhizal fungi can be 100s kilometres in a single plant!

 On a hot summer's day a large tree can transpire 100 to 150 litres of water (with dissolved metals that precipitate in the plant tissues)

Mineral Phases in Plants SEMs

Silica phytoliths on grass

Fe, Zn, S phase within western hemlock twig

0.5μm

Heterogeneity of Plants

VARIATIONS AMONG SPECIES AND TISSUES

Tree	Tissue	Au ppb	As ppm	Mo ppm	Sb ppm
Dougla ś ir	Twig	35	1600	<1	1
Dougla fir	Needle	23	130	<1	2
Dougla fir	Bark	53	250	<1	8
Western Hemlock	Twig	200	710	<1	8
Western Redcedar	Twig	7	11	4	1
Western Redcedar	Needle	5	6	<1	1
Western Redcedar	Bark (all)	8	12	<1	1
Western Redcedar	Bark (outer)	31	46	<1	11
Red Alder	Twig	14	4	57	0.5
Red Alder	Bark	<5	4	4	0.3
Douglas Maple	Twig	12	6	4	1

SULLIVAN – Lodgepole Pine (Ash)

		Top	Lower	Outer	Roots
		Stem	Twigs	Bark	
\mathbf{Ag}	ppm	1	3	13	77
As	ppm	9	9	52	190
Au	ppb	<5	<5	20	19
B	ppm	1150	400	260	580
Cd	ppm	52	95	143	135
Cs	ppm	110	9	5	38
Cu	ppm	400	180	158	190
Ni	ppm	180	22	14	24
Pb	ppm	150	2950	4900	16400
Zn	ppm	6100	7350	5700	12800

Seasonal Variations – Alder Gold (ppb) in twig ash (n = 17)

June	August	September	April
29	18	17	71

PLANT SAMPLING AND PREPARATION

Whether or not to Wash Samples

Iron - No Difference

Cadmium - No Difference

Whether or Not to Ash Samples

- Pro: Reduction to ash permits concentration of elements from large samples
- Con: During ashing, some elements (As, Sb) partially, or completely (Hg) volatilize from some species
- However, Controlled ignition results in constant losses, therefore distribution patterns are relevant

Element Losses

Analysis of ash [at 475°C] compared to analysis of dry tissue

Elements that are Commonly Only Detected in Ash (ICP-MS) i.e. below detection in dry tissue:

Pt, Pd, Bi, Sb, Te, Tl, In, Re, Th, V, most REE

CONTAMINATION

Precautions

Pb contamination along road

CARAMELIA - BC NICKEL (ppm) in Dry Larch Bark

Courtesy of Merit Mining

STRATIGRAPHY and LITHOLOGY

BREWERY CREEK PROJECT, YUKON Black Spruce Twigs (Ash)

Geological Survey of Canada

4/1/07

Structural Trends

MERCURY and GOLD Dry Larch and Pine Bark

Merit Mining Corp.

Caramelia Property, Southern BC

Mercury in Pine Bark Mercury in Larch Bark McKinney vein McKinney vein Waterloo vein Waterloo vein Dusty **←**Dus **Power Line Power Line** Gas Line Gas Line **200** m Exploration07 © Colin E. Dunn

Keep in Mind:

- What are we trying to achieve?
- Why are we using plants?
- How do we use plants?
- Where should we be using plants (rather than soils, rocks, water etc.)?
- What precautions do we need to take?

Be consistent, and, when interpreting the analytical results ask the questions:

- Is there a possible analytical explanation?
- Is there a possible contamination explanation?
- Is there a possible ecological or physiological explanation?
- Is there a possible geological explanation?

Finally, ask the question

Are your interpretations correct, reasonable and justifiable?

CASE HISTORIES and More Details

Plenary Session Tuesday, 10:40