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INTRODUCTION 

Numerous papers have been written on the logarithmic distribution of trace elements and ore metals over the years. One 
of the first was Razumovsky (1940), followed some years later by the influential work of Ahrens, typified by his 1954 paper 
(Ahrens 1954). Vistelius (1960) argued that lognormal distributions came about naturally on physical grounds due to the 
processes of rock formation. Similar physical processes, involving repetitively splitting a volume of material into portions 
containing increased or decreased elemental concentrations, have been studied by DeWijs (1951), Brinck (1976) and 
Garrett (1986). This process leads to logbinomial distributions. Limpert et al. (2001) demonstrated how a similar process 
leads to the lognormal distributions so common in the physical sciences. 

The reality of applied geochemistry is that data are derived from surficial and bedrock environments that are, more 
often than not, complex and field data sets are rarely symmetrically distributed. The data, as observed, are drawn from the 
various populations and geochemical processes present in the survey or study area. They do not exhibit �bell-shaped� 
distributions and are frequently polymodal. They can be �tortured� towards normality with tools like the Box-Cox power 
transform (e.g. Howarth and Earle 1979), of which a logarithmic transform is a special case. Furthermore, such transforms 
may obscure polymodality that conveys useful information. Alternately, a power transformation that expands the data to a 
range with maximum spread and/or contrast to provide an improved visualization, may be employed for map presenta-
tions and distributional displays (Stanley 2005). 

BACKGROUNDS AND THRESHOLDS 

In applied and exploration geochemical surveys, the range of background values must be established for each of the 
diverse surficial and bedrock environments present. The threshold can be defined as the upper limit of background 
variation (Reimann and Garrett 2005). These geochemical parameters are best estimated through appropriate orientation 
surveys and inspection of the data using maps, histograms (Hawkes and Webb 1962), and probability plots (Lepeltier 
1969; Sinclair 1976).  

If the former did not lead to the choice of a geochemically justified threshold, Hawkes and Webb (1962) proposed that 
threshold values could be estimated as the mean of the background data plus two standard deviations (SD). An estimate 
that would, assuming normality, identify the value below which 98% of background data should fall. In any subsequent 
survey using similar procedures in a geologically and geochemically similar area, applying that threshold would identify 
2% of the data for further investigation. These, hopefully, would include any samples related to non-background processes 
and mineral occurrences of interest. Whether or not this approach is appropriate, and how it should be accomplished, has 
been the topic of numerous papers, for example, Matschullat et al. (2000), Reimann and Filzmoser (2000) and Reimann 
et al. (2005). Methods not requiring normality, non-parametric methods, may be employed. However, even then normality 
lurks in the background: the median replaces the mean; however, underlying the calculation of the Median Absolute 
Deviation (MAD), the equivalent of the standard deviation, lies a factor based on the normal distribution. Recently, proce-
dures to unmix complex geochemical data sets have been investigated (e.g. Eschenfelder et al. 2023), however, some 
are based on the assumption of normality (e.g. Lucero-Álvarez et al. 2021). 

This is further complicated by the fact that geochemical data are compositional, i.e., they sum to a constant, and 
therefore, as some values increase, others must decrease. The impact of this and the necessity for compositional data 
analysis procedures have been discussed by Barceló et al. (1996), Mateus-Figueras et al. (2005) and Buccianti et al. 
(2006), among others.  

BACK TO FIRST PRINCIPLES 

Statistical estimates of the background range and threshold are based on an assumption of underlying normality. �Normal-
ity assumes that the continuous variables to be used are normally distributed. Normal distributions are symmetric around 
the center (a.k.a. the mean) and follow a 'bell-shaped' distribution� (Statistics Solutions 2013). This begs the question, 
what is a continuous variable? �A continuous variable is one which can take on an uncountable set of values. For exam-
ple, a variable over a non-empty range of the real numbers is continuous, if it can take on any value in that range�  
(Wikipedia 2019a). So, what is a real number? �A real number is a value of a continuous quantity that can represent a 
distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who 
distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such 
as the integer -5, the fraction 4/3, and all the irrational numbers, such as √2� (Wikipedia 2019b). 
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ANALYTICAL CHEMICAL DATA 

Analytical data meet the criteria for being continuous and real. However, they are measured on what McCue (2007) 
defines as �ratio scales� that are �numeric and are associated with a true zero � meaning that nothing can be measured. 
For example, weight is a ratio scale�. Furthermore, Mosteller and Tukey (1977) define �counted fractions� as scales that 
are bounded by zero and one. Thus �weight per weight� analytical geochemical data expressed, e.g. in mg/kg, are meas-
ured on �ratio scales� and are �counted fractions�; they are constrained to vary between zero and 100%, 106 mg/kg, etc., 
and are bounded.  

Thus, data at the extremes, close to zero or the maximum of the ratio scale, can be positively (right) or negatively 
(left) skewed, respectively, as their possible values cannot fall below zero or exceed the scale maximum. In the central 
part of the range, the spread of the data may be unconstrained by the bounds and behave like a normal distribution, i.e., 
following a �bell-shaped� distribution. Therefore, if parametric statistical procedures are to be applied to the data approach-
ing the scale minima and maxima, they need to be transformed towards normality. Referring specifically to �Proportions 
and Percentages�, Deacon (2020) offers three procedures: 

1. Convert to arcsine values (see Holland 2017); 
2. A logarithmic transformation; and 
3. Converting to probits.  

Wilson et al. (2010) and Warton and Hui (2011) report that the arcsine transformation is losing popularity, despite its 
use in the geosciences (Miller and Kahn 1962; Krumbein and Graybill 1965; Holland 2017). If the data are drawn from an 
underlying Poisson distribution, which is uncommon in geochemistry, the arcsine transform will induce homoscedasticity, 
i.e. equal spread across the range of the data, a desirable statistical property (Stanley pers. comm. 2023). The logarithmic 
transform only works for the lower part of the ratio scale as demonstrated below. Converting to probits, though it does 
cover the full range with reference to the normal distribution, it is more suitable for instances where the values are zero or 
one and therefore not continuous; it will not be discussed further. 

LOGITS AND THE LOG TRANSFORM 

The reality is that analytical data are measured on ratio scales and are counted fractions. What is required is a transform 
that breaks the bounds of counted fractions and permits values to occupy the complete range of real numbers, i.e. -∞ to 
+∞. Such a transform is the logit (Berkson 1944; Holland 2017; Wikipedia 2020), the log of the odds for some probability p.  

As a mechanism by which to transform a zero-to-one counted fraction, or any concentration that can be rendered zero-to-
one through division by the scale maximum, to a real number, the logit transformation suffices. It matters not whether a 
Naperian logarithm to the base e, or a logarithm to the base 10 is employed; here the former is applied.  

The relationship of the logit to the zero-to-one proportion scale is shown in Figure 1 (left). When the proportion is 
plotted with logarithmic scaling (Fig. 1, right) the relationship between logit and log(base 10) proportion appears to be 
linear between low proportions and 0.1 (i.e. 10%). The estimated linear (Pearson) correlation coefficient is >0.9999 
between proportions equivalent to 1 µg/kg (ppb) and 10%. Clearly, there is an operational equivalency between the logit of 
a proportion, counted fraction, or concentration and its logarithm up to concentrations of 10%. 

LOGIT APPLIED TO GEOCHEMICAL DATA 

From Figure 1 (left) the logit transformation should be effective for reducing skewness across all concentrations, i.e., for 
both distributions exhibiting negative skews as they approach the scale maxima, and positive skews as they approach 
scale minima. In both instances, the logit transformation releases the data from their bounding restrictions. The silica data 
in Figure 2 range from 59 to 95% and a negative skew is apparent. The application of a logit transformation (Fig. 2, right) 
opens the data as it approaches 100% and leads to a more symmetric (normal) distribution.  

logit (p) = log (
p

1 - p
)

Fig. 1. The logit function versus proportion (left), with logarithmic scaling (right).
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The applicability of the logit transform across a wide range of concentrations is demonstrated with a set of soil organic 
carbon data ranging from 0.5 to 77% (Fig. 3, left) exhibiting extreme positive skew. 

The logit transform effectively removes the positive skew and leads to a symmetric, more normal, distribution suitable 
for the application of parametric (normality-based) statistical methods.  

An example of an extreme positive skew across almost three orders of magnitude, with data ranging from 0.2 to 96 
mg/kg, familiar in trace element studies, is shown in Figure 4 (left). Again, the logit transform is effective in leading to a 
more symmetric distribution (Fig. 4, right), although still with outliers due to contamination from an anthropogenic sources 
in the study area. 

As demonstrated in Figure 1 (right) at levels below 10% (100,000 mg/kg) the logarithmic and logit transforms are 
equivalent. Figure 5 provides a visual comparison with the Co data exhibited in Figure 4, where plotting Co concentrations 
with logarithmic scaling is equivalent to logit transforming the data. 

In multivariate data analysis, full compositional data analysis procedures, i.e. log-ratios, are required. However, 
bivariate displays fall between univariate and multivariate and may benefit from logarithmic scaling. If the data span more 
than one-and-a-half to two orders of magnitude, they probably display a lack of homogeneity of variance. This feature, 
also known as heteroscedasticity, is visually expressed by the data points spreading out in an increasingly broader �fan� 

Fig. 2. Silica concentration (SiO2, Li-metaborate fusion) in <63 µm till (left), and with a logit transformation (right). 

Fig. 3. Organic carbon concentration (Loss-on-Ignition) in <2 mm soil (left), and with a logit transformation right). 

Fig. 4. Cobalt concentration (HNO3 digestion) in <2 mm O-horizon soil (left), and with a logit transformation (right). 
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with increasing concentration when plotted on the original scale (Fig. 6, left). Plotting geochemical data with logarithmic 
scaling provides a quick graphical check for heteroscedasticity. If it is present, the data plot as a band of equal spread with 
increasing concentration, see Figure 6 (right). A statistical assumption of regression-line (Ordinary Least Squares) fitting is 
that across the range of the data the variances, or spreads, of the data are independent of concentrations, i.e. they do not 
�fan out�. 

The procedure applied by statisticians in undertaking 
analyses based on squared differences, e.g. regression 
modeling and Analysis of Variance, is to logarithmically 
transform the data (Bartlett 1947; Weissberg 1980, and 
others). 

However, Figure 6 does not tell the whole story, as the Fe 
and Mn, as well as being counted fractions individually, are 
members of an even larger �counted fraction�, the overall 
chemical composition of the sample.  

The solution to this problem is the use of log-ratios (see, 
for example, Aitchison 1984 and Pawlowsky-Glahn et al. 
2015). The simplest approach is to use an arithmetic log-ratio, 
dividing the elements by another member of the composition 
and taking the logarithm, or simply plotting the ratios with log-
scaling, as is familiar in petrochemical studies (see Pearce 
1968). Again, taking the logarithm of a ratio turns it into a real 
number. Figure 7 (left) displays the same Fe and Mn data as 
ratios to Al, a major component in the overall composition, 
plotted with logarithmic scaling. The relatively �tight� band in 
Figure 6 (right) has been broadened as a result of the recog-
nition that the data are compositional; as some components 
(parts) increase others must decrease. The data do not �fan 
out� and homogeneity of variance is maintained, though the 
spread has increased due to taking account of at least one of 
the other elements in the composition. 

Fig. 5. Histograms for cobalt concentration (HNO3 digestion) in <2 mm O-horizon soil,  

with logarithmic (left) and logit (right) transformations. 

Fig. 6. Plots of manganese vs. iron concentrations (four-acid 

digestion) in <63 µm till, without (left) and with logarithmic 

scaling (right). 
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The use of symmetric coordinates (Garrett et al. 2017; Kynčlová et al. 2017), a complex log-ratio, allows all the major 
and minor element concentrations to be included. The concentration data for Figures 6 and 7 were determined following a 
four-acid (HF-HClO4-HNO3-HCl) near-total digestion, Si was not determined. The major and minor elements included in 
the calculations of symmetric coordinates were Al, Ca, Mg, Na, K, Fe, Mn, Ti, Cr and P. The result of including the nine 
major and minor elements beyond Al is displayed in Figure 7 (right). Homogeneity of variance has been maintained, but 
the spread (uncertainty in the inter-element relationship) has been further increased as a result of taking the almost-com-
plete suite of major and minor elements into account. 

DISCUSSION 

It has been shown that logarithmic distributions can come about due to rock-forming processes. Furthermore, the very 
nature of analytical data as counted fractions, i.e. relative data, requires a transformation to better visualize their distribu-
tions and is necessary if statistical procedures that assume normality are to be employed. For example, if there is no prior 

knowledge of the threshold for an exploration program, or it 
cannot be derived by graphical inspection or analysis, an option 
is to select some percentile of the data (e.g. 98th percentile) or 
employ statistical estimation. The nature of trace element 
geochemical data requires a transformation. Without transforma-
tion, estimates for the upper limits of the background values (i.e. 
thresholds), by median+2*MAD, or mean+2*SD, may exceed the 
upper bound of the data; alternatively, a lower bound of less than 
zero may be estimated. These thresholds are impossible and 
their presence is a reminder of the need for a transformation. 
Trace element data visualization benefits from logarithmic 
scaling: simple calculations should be undertaken following a 
logarithmic transform, and the results back-transformed to the 
original scaling. An advantage of visualization with logarithmic 
scaling is that differences are appreciated as ratios, conforming 
to the way applied geochemists consider their data, i.e. levels 
are twice, or half, etc., some other value, not as absolute arith-
metic differences. 

At higher concentrations, especially when approaching scale 
maxima, visualizations may benefit from a logit transformation 
(e.g. Figs. 2 and 3). In the mid ranges, it may not be necessary 
to undertake any transformation. Webster and Oliver (1990) state 
that for the arcsine transformation, �When the observed values 
fall in the range 30�70 percent, there is very little to be gained by 
the transformation, and it is unlikely that there will be much gain 
when only a small proportion of the observations fall outside this 
range�. This statement applies equally to the logit transformation. 
Prudent investigators will study their data visually and determine 
if a lack of symmetry or homogeneity of variance requires a data 
transformation before proceeding further. 

For multivariate data analysis, log-ratio transformations (e.g. 
Paid Advertisement continued on page 11
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centred and isometric log-ratios) are required to reveal true inter-element relationships independent of closure. For 
bivariate relationships the arithmetic log-ratio transformation, as discussed above, is sufficient. A common thread in all 
these procedures is that a logarithmic transformation is used to turn a zero lower bounded ratio into a real number. 

With the availability of machine learning methods and other advanced or non-parametric methods, data transforma-
tions to reduce skewness in data prior to analysis may not be necessary. However, for many visualization tasks, a trans-
formation will assist geochemists in their interpretational tasks. 

CONCLUSIONS 

Geochemical data are not real numbers in mathematical terms, they are counted fractions lying between bounds, and 
they can neither fall below, nor rise above, those bounds. To convert the counted fractions to real numbers suitable for 
statistical analysis, a logit transformation is sufficient. At concentrations below 10%, logit and logarithmic transformations 
are equivalent. Thus, when trace element data are plotted with logarithmic scaling the values become real, the positive 
skew is reduced, and the data appear to be more symmetrical and normally distributed. Furthermore, many of the geologi-
cal processes controlling the distribution of elements in nature are multiplicative, leading to logbinomial or lognormal 
distributions. 

The logarithmic transformation is relevant and useful for two reasons. Firstly, it effectively converts trace element 
geochemical counted fractions to real numbers and improves data visualization by �decompression� at low concentrations. 
Secondly, if the assumptions that underlie parametric statistical methods, the estimation of means, variances (standard 
deviations), and other procedures that are based on squared differences, are to be met, the data should approach normal-
ity and variances need to be independent of concentration, i.e. homoscedastic. A logarithmic transformation of trace 
element data meets both these requirements. 
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NOTE 

All calculations and plot preparation was undertaken with R 3.4.3 (R-Project 2020) and package �rgr� version 1.1.16 
(Garrett 2013). 
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