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INTRODUCTION
	 Greenfields	mineral	exploration	in	covered	terrain	is	often	hindered	by	a	failure	to	detect,	understand,	and	evaluate	
near-surface	geochemical	anomalies.	This	is	due	to	several	challenges	including	in	the	detection	of	relevant	trace	metals	
in	cover	(e.g.,	due	to	dilution	or	differential	concentration),	the	availability	of	sufficient	information	(e.g.,	additional	path-
finder	elements	and	soil	properties),	and	an	understanding	of	landscape	context	to	enable	exploration	based	on	informed	
decision-making processes.
	 Between	2012	and	2018,	the	UltraFine+®	method	was	designed	specifically	to	address	the	challenges	of	detect-
ing	a	suite	of	52	elements	in	shallow	transported	cover	(Noble	et al.	2020a)	by	Australia’s	National	Science	Agency,	the	
Commonwealth	Scientific	and	Industrial	Research	Organisation	(CSIRO).	Over	the	past	three	years	the	CSIRO,	with	the	
support	of	many	industry	sponsors	and	Australian	State	and	Territory	geological	surveys,	developed	a	machine	learning	
workflow	to	create	landscape	context	for	these	results.	Here	we	highlight	some	of	the	main	developments	of	this	approach	
to	assist	future	research	and	development	in	soil	geochemical	analysis	and	interpretation.
	 Surface	geochemical	signatures	of	mobile	metals	relating	to	mineralisation	below	(or	within)	cover	are	often	diluted	
and	close	to,	or	below,	analytical	detection	limits	(Anand	et al. 2016)	and	improvement	in	soil	sample	analysis	has	com-
monly	focussed	on	lowering	detection	limits	by	developing	more	sensitive	extraction	methods	or	partial	extractions	on	bulk	
samples	(e.g.,	Chao	1984;	Bajc	1998;	Gray	et al.	1999).	The	UltraFine+®	method	focusses	on	extracting	the	clay-sized	
fraction	(<2	µm;	Noble	et al.	2020a)	from	a	standard	soil	sample	which	hosts	the	bulk	of	useful	indicator	elements,	as	
these	are	preferentially	adsorbed	on	clay-sized	particles	and	other	“scavenging”	phases	with	large	surface	areas	(e.g.,	or-
ganic	compounds	and	various	oxides/oxyhydroxides;	Hall	1998).	By	removing	the	majority	of	the	coarse-grained	“barren”	
(usually	silica-dominated)	portion	of	a	soil	sample,	the	geochemical	signal	of	mobile	trace	metals	is	increased,	effectively	
enhancing	measured	abundances	by	up	to	100	–	250	%	of	elements	such	as	Au,	Cu	and	Zn	(Noble	et al.	2018).	
	 Regardless	of	the	advanced	method	of	extraction,	significant	value	can	be	added	by	improving	the	interpretation	of	
surface	geochemical	surveys	in	landscape	context.	In	mineral	exploration,	the	composition	of	the	sampled	regolith	mate-
rial,	its	position	within	the	landscape,	its	genetic	relationship	to	the	bedrock	hosting	potential	mineralisation	(in	situ	vs.	
transported	cover)	and	the	depth	of	this	cover	(Anand	et al.	2016)	can	affect	the	way	metals	move	through	the	environ-
ment	and	impact	how	we	interpret	the	data.	However,	these	aspects	are	not	always	appropriately	considered	during	
surface	exploration.	Recently,	the	CSIRO	has	developed	a	machine	learning	workflow	referred	to	as	“Next	Gen	Analytics”,	
to	delineate	landscape	context	for	surface	geochemical	survey	results.	This	approach	uses	exclusively	publicly-available	
spatial	features	derived	from	remotely	sensed	data	with	the	goal	to	normalise	geochemical	concentrations	by	landscape	
type.	This	enables	the	comparison	of	samples	across	vast	regions	with	varying	landscapes	in	greenfields	exploration	set-
tings. 
	 Here	we	examine	historically	collected	samples	from	a	greenfields	soil	survey	over	3600	km²	in	Western	Australia	col-
lected	in	1999,	and	illustrate	some	key	advances	that	UltraFine+®	delivered	in	2018,	and	the	Next	Gen	Analytics	approach	
delivered	in	2023	(Fig.	1).	The	comparison	shows	the	benefits	of	improved	sensitivity	of	gold	and	other	elements	for	
analyses	(Fig.	1B)	with	the	addition	of	multielement	interpretation	and	the	ability	to	highlight	geochemical	anomalies	within	
different	landscape	types	(Fig.	1C).	Importantly,	Next	Gen	Analytics	identifies	anomalies	in	transported	cover	types	where	
the	measured	elemental	abundances	are	commonly	lower	compared	to	the	whole	survey,	but	anomalous	relative	to	soils	
collected	in	similar	landscape	settings	(Fig.	1C).	While	landscape/regolith/landform	maps	are	available	for	many	regions	
in	Australia,	these	are	often	produced	at	coarse	resolutions,	are	derived	from	aerial	photography	and,	in	some	cases,	
supplemented	by	limited	on-the-ground	observations,	and	do	not	take	depth	of	cover	into	consideration.	Above	all,	they	
are	prone	to	human	inconsistencies	in	interpretation.	Using	machine	learning	to	derive	landscapes	from	remotely	sensed	
spatial	features	allows	this	approach	to	be	employed	in	most	regions,	even	where	traditional	map	products	are	not	avail-
able	or	only	available	at	a	coarse	resolution	(as	is	often	the	case	when	explorers	advance	into	true	greenfields	settings).	

https://doi.org/10.70499/YCQK8307
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Fig. 1: Key developments in soil sample analysis and interpretation over the past two decades on the example of Au in the Kingston 
project area in Western Australia. The same soil samples were analysed in 2000 and in 2018, and later interpreted in machine learning 
derived landscape context in 2023. Mt Eureka, the only mined Au occurrence within the survey area, is indicated with a green star. (A) 
Gold results analysed by the Geological Survey of Western Australia in 2000 (Pye et al., 2000) via a traditional soil sample analytical 
fire assay fusion method from <2 mm to > 0.45 mm sieved soil that was milled to a nominal <75 µm size. Only 111 samples out of 302 
returned Au above the detection limit with the traditional soil analysis method. Of these, 93 samples were at the detection limit (1 ppb) 
and only 18 samples showed appreciable Au concentrations. (B) Gold analytical results of the same 302 archived soil samples via the 
UltraFine+® analytical method in 2018 (Noble et al. 2020b). The same samples returned detectable Au in most samples with the Ultra-
Fine+® method – 38 samples were below the detection limit (0.5 ppb), and 2 samples were at the detection limit. (C) Gold outliers identi-
fied in the 2018 UltraFine+® dataset, where outliers are derived for each proxy landscape type with the Next Gen Analytics machine 
learning workflow (see details in text below). Two new potential targets have been identified in transported cover which show relatively 
low concentrations (4.6 and 4.8 ppb Au) compared to the highest values (up to 8.6 ppb). 



PAGE  6 NUMBER 198  EXPLORE

continued on page 8

Old Soils, New Targets: … continued from page 5

Study Site – Kingston
	 Our	case	study	covers	the	southern	half	of	the	Kingston	1:250,000	topographic	map	sheet	in	the	Northern	Goldfields	
of	Western	Australia.	The	area	straddles	the	north-eastern	edge	of	the	highly	prospective	Yilgarn	Craton	(dominated	by	
granites	and	greenstones)	and	extends	into	the	Earaheedy	Basin	(dominated	by	shales	interbedded	with	iron	formation	
of	the	Frere	Formation;	Fig.	2).	Surface	geochemical	exploration	within	this	area	has	largely	focused	on	orogenic	Au	and	
komatiite-hosted	Ni	mineralisation,	both	hosted	within	the	greenstone	belts	(https://minedex.dmirs.wa.gov.au/web/home)	
and,	to	date,	only	the	Mount	Eureka	Au	mine	has	been	developed	within	the	area	(Fig.	2).	The	small	deposit	produced	941	
t	of	ore	from	1932	–	1937,	with	quartz-vein	associated	mineralisation	hosted	in	silicified	talc-carbonate	schist	within	mafic	
greenstone	(Pye	et al.	2000).	In	recent	years,	industry	has	shown	interest	in	VMS-style	Cu-Zn	deposits	within	the	region	
(https://www.roxresources.com.au/projects/mt-fisher-gold-project/).

Fig. 2: Location of case study site, samples collected by the GSWA in 1999 and reanalysed via the UltraFine+® method in 2017, and 
simplified geology of part of the Kingston map sheet (after Martin et al. 2014). Tenement distribution indicates current (as of 20 Febru-
ary 2023) exploration activities within the area are focused on greenstone and sedimentary units. Recorded mineral occurrences are 
concentrated within the ultramafic and mafic greenstone units.

	 The	bedrock	in	the	area	is	largely	concealed	by	transported	cover	over	almost	85	%	of	the	area	with	few	exposed	or	
residual	weathered	regolith	materials	(Pye	et al.	2000;	Fig.	3A).	The	transported	cover	is	dominated	by	broad	sheetwash	
plains	and	valleys	incised	by	channels,	sandplain	and	colluvial	materials	with	minor	lacustrine	(playas),	alluvial	and	eolian	
deposits	(Fig.	3B).	The	cover	materials	have	been	characterised	in	detail	in	a	study	by	the	Geological	Survey	of	Western	
Australia	(GSWA)	in	1999	noting	remnants	of	major	drainage	systems	that	are	either	calcrete-dominated	or	characterised	
by	dunes	and	alluvial	channels	associated	with	playa-lake	systems	(Pye	et al.	2000).	In	the	same	study,	the	GSWA	also	
analysed	almost	1000	samples	across	the	Kingston	map	sheet	which	were	archived	at	the	GSWA’s	core	storage	facility	
and	subsequently	made	available	for	reanalysis	via	the	UltraFine+®	analytical	method	(published	in	Noble	et al.	2020a).	
The	availability	of	these	analytical	results	from	a	variety	of	different	regolith	materials,	in	conjunction	with	the	detailed	
regolith	mapping	carried	out	by	the	GSWA,	made	the	Kingston	map	sheet	a	useful	location	to	trial	and	improve	the	Ultra-
Fine+®	method	as	well	as	the	Next	Gen	Analytics	approach.
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Fig. 3: Regolith maps over the Kingston area. (A) Regolith geology regimes map (de Souza Kovacs and Jakica 2021) based on the 
RED scheme of Anand et al. (1993) where regolith landform units are classified into three major regimes (residual, erosional and depo-
sitional) relating to their composition and landscape position. (B) Simplified regolith landform map (Jakica et al. 2020) which expands 
the RED regimes into more detail regarding dominant mechanisms of formation or parent material.

2000 – Historic soil sampling survey and regolith mapping
	 The	GSWA	collected	almost	1000	regolith	samples	from	stream	sediments,	sheetwash/soil,	lake	sediments	and	
sandplain	materials	in	the	Kingston	map	sheet	as	part	of	an	extensive	regional	study	in	1999.	These	samples	were	sieved	
to	<	2	mm	to	>0.45	mm,	pulverised	and	analysed	using	seven	different	analytical	methods	to	derive	49	geochemical	
and	physicochemical	parameters	including	major	and	trace	elements,	pH,	and	conductivity.	The	methods	and	analytical	
results	are	documented	in	Pye	et al.	(2000).	The	GSWA	also	provided	a	regolith	map,	laboriously	generated	by	combining	
information	from	topographic	data,	black-and-white	aerial	photographs	(dated	1974	and	1993),	Landsat	Thematic	Mapper	
images	(dated	1994),	previous	geological	maps	(Bunting	1980,	1986;	Myers	and	Hocking	1998)	as	well	as	geochemical	
regolith	survey	results	and	field	observations	(one	per	16	km²)	collected	by	six	geologists	and	six	field	assistants	using	
two	helicopters.	Airborne	radiometric	and	magnetic	data	were	also	consulted	(Pye	et al.	2000).	The	resulting	map	is	avail-
able	in	McGuiness	and	Pye	(2000).
	 The	work	of	the	GSWA	characterised	regolith	materials	as	well	as	indicated	the	abundance	of	metals	of	interest	on	
the	Kingston	map	sheet	(Pye	et al.	2000).	Given	the	analysed	size	fraction	was	>0.45	mm,	it	was	expected	that	the	results	
would	show	lower	concentrations	than	analyses	via	UltraFine+®.	Indeed,	for	Au,	94%	of	the	data	was	at	or	below	the	
detection	limit	(1	ppb).	Only	18	of	the	302	samples	returned	Au	above	the	detection	limit	with	the	traditional	soil	analysis	
method.	Where	detected,	concentrations	were	generally	low	(Au	≤4	ppb)	with	the	highest	values	recorded	in	cover	over	
mafic	and	ultramafic	(greenstone)	rocks	(Fig.	1A).	Some	higher	values	of	Bi	and	As	were	observed	near	the	most	westerly	
greenstone	belt	that	hosts	the	Mt	Eureka	mine,	while	most	Ag	concentrations	were	below	the	detection	limit	(0.1	ppm).	
Higher	values	of	Ni,	Pb	and	Zn	were	also	observed	in	proximity	to	greenstone	belts	within	the	area,	while	higher	Cu	val-
ues	were	only	observed	near	or	over	the	most	westerly	greenstone	belt	that	hosts	the	Mt	Eureka	mine.

continued on page 10
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	 The	work	by	Pye	et al.	(2000)	indicates	that	regolith	chemistry	in	the	Kingston	map	sheet	is	at	least	partly	controlled	
by	underlying	bedrock	geochemistry,	differentiating	regolith	that	overlays	greenstone	and	granitic	bedrock.	However,	Pye	
et al.	(2000)	also	note	the	control	of	regolith	type	on	geochemistry	in	soil	samples,	such	as	a	general	depletion	of	many	
analytes	in	lake	sediments	with	low	clay	content	(inferred	from	major	element	analysis),	as	well	as	the	prevalence	of	SiO2 
in	sandplain	materials	and	the	potential	effect	of	dilution	of	other	analytes	by	eolian-derived	quartz	sands	that	may	con-
tribute	material	to	otherwise	locally-derived	sandplain	materials.	They	indicate	that	both	bedrock	and	regolith	type	exert	
controls	on	bulk	geochemistry,	and	it	is	therefore	important	to	assess	geochemical	analyses	within	this	context.	
	 While	the	regolith	materials	map	derived	from	this	work	(MacGuiness	and	Pye	2000)	is	detailed,	compiling	the	map	
required	multiple	soil	analyses,	extended	on-the-ground	labour	and	an	in-depth	understanding	of	regolith	processes.	Pye	
et al.	(2000),	also	note	that	discrepancies	arose	when	regolith	codes	were	assigned	from	field	observations	compared	to	
those	assigned	from	maps	compiled	from	remotely	sensed	data.	

2018 – Old soils re-assayed with UltraFine+®

	 In	2017,	302	archived	sheetwash	and	sandplain	samples,	initially	collected	by	the	GSWA,	were	reanalysed	via	the	
UltraFine+®	soil	analytical	method	(MAR-04)	at	LabWest	Pty	Ltd,	Perth,	Australia.	This	method	was	developed	by	the	
CSIRO	in	collaboration	with	a	commercial	laboratory	and	sponsored	by	nine	industry	and	state	government	partners	
(Noble	et al.	2018),	and	was	designed	to	capture	the	mobile	element	concentration	in	cover.	The	complete	UltraFine+® 
method	is	based	on	separating	the	ultrafine	(<2	µm)	size	fraction	via	suspension	in	de-ionised	water	and	a	dispersant	
followed	by	centrifugation,	and	uses	a	microwave-assisted	aqua	regia	digestion	in	a	closed	Teflon	tube	to	derive	a	multi-
element	suite	using	ICP-MS	and	ICP-OES.	The	full	method	is	described	in	detail	in	Noble	et al.	(2020a).	However,	detec-
tion	limits	have	since	been	improved,	and	additional	elements	I,	Br	and	Pd	have	been	added	to	the	standard	analysis	
suite	since	its	publication	(https://www.labwest.net/ultrafine-dl/).	Additional	rare	earth	elements	(REE)	are	also	available	
for	some	commercial	analytical	packages.
	 The	effect	of	various	small	size	fractions	on	elemental	analysis	results	in	mineral	exploration	has	been	investigated,	
among	others,	by	Scott	and	van	Riel	(1999),	Morris	(2013),	Anand	et al.	(2014),	Arne	and	MacFarlane	(2014),	Baker	
(2015)	and	Sader	et al.	(2018),	and	included	test	work	on	Au	concentrations	in	different	size	fractions	of	sand	dune	
samples,	which	indicated	that	most	of	the	Au	was	contained	in	the	<2	µm	size	fraction	(Noble	et al.	2013).	Based	on	this	
work,	the	UltraFine+®	soil	analytical	method	was	developed	to	separate	the	<2	µm	“ultrafine”	soil	fraction	for	multielement	
analysis,	effectively	concentrating	the	phases	of	interest	followed	by	an	aggressive	digestion	(Noble	et al.	2020a,	2020b).
The	improved	recovery	of	mobile	elements	from	the	ultrafine	fraction	results	in	higher	absolute	measured	concentrations	
on	average,	effectively	reducing	the	number	of	results	below	the	detection	limit.	This	improves	the	resolution	of	concentra-
tions	near	the	detection	limit,	which	enables	the	delineation	of	subtle	geochemical	enrichments	for	these	elements	(e.g.,	
Au;	Fig.	1A,	B).	The	detection	of	these	subtle	variations	is	particularly	relevant	for	exploration	through	transported	cover.	
As	an	example,	the	exploration	relevant	elements	Au,	As,	Cu,	Ni,	Pb	and	Zn	in	the	Kingston	survey	show	a	higher	median	
abundance	in	the	UltraFine+®	results	compared	to	the	previous	survey	results	via	mixed-acid	digestion	and	fire	assay	(Fig.	
4).
	 It	is	important	to	note	that	the	ultrafine	method	does	not	increase	concentrations	or	lower	detection	limits	below	other	
current	analytical	methods,	but	rather	removes	the	diluting	effect	of	trace	element-poor	phases	in	the	bulk	sample.	The	dif-
ferent	approach	to	sampling	and	analysing	is	designed	to	capture	more	of	the	mobile	phases	derived	via	dispersal	mecha-
nisms	in	regolith	(shallow,	<30	m,	the	mobile	phase	in	transported	as	well	as	weathered	in situ)	materials,	while	more	
immobile	or	resistate	elements	are	likely	better	recovered	by	standard	digestions	such	as	four-acid	(Henne	et al.	2022).	It	

is	therefore	not	surprising	that	the	greatest	overall	measured	
abundances	are	not	always	recovered	with	the	UltraFine+® 
method	(e.g.,	in	the	case	of	gold	nuggets	or,	in	this	study,	As,	
Ni	and	Pb;	Fig.	4B,	D,	E).	However,	the	UltraFine+®	results	
show	smaller	interquartile	ranges	which	increases	confidence	
that	the	method	consistently	measures	phases	relating	to	the	
same	geological	processes	(the	clay	fraction).	This	indicates	
that	the	resulting	outlier	definition	is	more	dependable	in	a	
regolith	material	context	than	the	more	variable	analyses	via	
standard	soil	analytical	methods	(compare	red	and	green	box	
plots	in	Fig.	4).
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Fig. 4: Comparison of exploration relevant pathfinder element analyses between the historic soil analyses and the UltraFine+® analy-
ses. Boxplots include values below the detection limit (replaced by half the respective detection limit); excluding the median; n=302. 
The 2000 survey results via mixed acid-digestion (except for Au which was analysed via fire assay) are displayed in red and the 2018 
results from re-analysis via UltraFine+® are displayed in green. (A) Au in ppb, detection limits GSWA 2000 = 1 pbb, UltraFine+® 2018 
= 0.5 ppb. (B) Ni in ppm, all values above the detection limits. (C) Cu ppm, detection limits GSWA 2000 = 1 ppm (all values above the 
detection limit for UltraFine+® 2018). (D) As in ppm, detection limits GSWA 2000 = 0.4 ppm (all values above the detection limit for 
UltraFine+® 2018). (E) Pb in ppm, all values above the detection limits. (F) Zn in ppm, all values above the detection limits. 

2023 Next Gen Analytics – Adding Machine Learning to delineate landscape context for surface geochemistry
	 Over	the	period	of	2020	to	2023,	the	CSIRO	developed	an	unsupervised	machine	learning	workflow	to	generate	
proxies	for	landscape	types	from	spatial	feature	layers	to	provide	context	for	surface	geochemical	data	interpretation.	
The	complete	Next	Gen	Analytics	workflow	includes	a	variety	of	outputs	such	as	principal	component	analysis,	explora-
tion	indices,	dispersion	and	source	direction	and	outputs	for	non-geochemical	soil	property	data.	Here,	we	only	present	
parts	of	this	workflow	(Fig.	5)	and	highlight	the	outputs	of	one	landscape	model	and	the	resulting	geochemical	outliers	in	
landscape	context.	An	overview	of	the	complete	Next	Gen	Analytics	data	package	and	several	How-to	guides	can	be	ac-
cessed	via	https://research.csiro.au/ultrafine/.

Methods
	 The	spatial	feature	layers	that	were	used	in	the	landscape	model	presented	here	for	the	Kingston	case	study	included	

continued on page 12
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Fig. 5: Simplified Next Gen Analytics machine learning workflow with key components applied to the Kingston case study to demon-
strate the main outputs (proxy landscape maps and outliers by landscape type for each analysed element). The boxplots resulting from 
this workflow break down the soil sample dataset into groups according to a machine-learned landscape cluster. See text for more 
details. 

continued on page 13
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a	Digital	Elevation	Model	(Copernicus	GLO-30),	Multi-resolution	Valley	Bottom	Flatness	(MrVBF;	a	proxy	of	depth	of	cover	
developed	by	Gallant	et al.	2012),	Radiometric	K	(%),	Th	(ppm)	and	U	(ppm)	(Poudjom	Djomani	and	Minty	2019a-c)	and	
regolith	band	ratios	derived,	after	a	method	by	Gozzard	(2005),	from	Sentinel-2	multispectral	imagery	(Geoscience	Austra-
lia’s	barest	earth	product;	Wilford	and	Roberts	2021).	The	spatial	feature	layers	were	resampled	to	a	common	100	m²	grid	
and	the	roads	within	the	area	were	masked	(and	appear	as	white	lines	in	outputs).	The	dimensionality	reduction	algorithm	
Uniform	Manifold	Projection	and	Approximation	(UMAP;	McInnes	et al.	2018)	was	used	to	project	the	pixel	(grid	cell)	data	
into	a	three-dimensional	latent	space.	After	which,	a	multi-step	clustering	process	was	used	to	assign	a	proxy	landscape	
type	to	each	data	point	(i.e.,	pixel).	First,	a	random	subset	of	20,000	pixels	was	used	to	fit	an	agglomerative	clustering	
model	(scikit-learn	implementation	in	Python;	Pedregosa	et al.	2011).	Next,	these	same	samples	and	their	cluster	IDs	
were	used	to	train	a	random	forest	classifier.	Finally,	this	classifier	was	used	to	predict	cluster	IDs	for	all	pixels	across	the	
model	area.	Pixels	were	classified	into	eight	clusters	based	on	similar	spatial	feature	properties,	to	provide	comparable	
complexity	to	the	eight	units	on	the	existing	state-wide	Simplified	Regolith	Landform	map	(Fig.	3B).	Pixels	in	each	cluster	
were	assigned	a	colour	based	on	the	ordinal	rank	of	the	mean	MrVBF	for	each	cluster.	
	 The	resulting	proxy	landscape	map	was	used	to	group	geochemical	data	according	to	the	landscape	cluster	corre-
sponding	to	each	soil	sample	location.	Elemental	outliers	were	then	calculated	for	each	of	these	clusters,	after	a	log-trans-
formation.	Results	below	detection	limits	were	first	replaced	by	half	the	detection	limit.	Here,	outliers	are	defined	as	values	
that	are	greater	than	1.5•IQR	beyond	the	first	and	third	quartiles	(where	IQR	is	the	interquartile	range,	Q3	–	Q1).

Landscape model
	 Understanding	the	relationships	between	material	provenance,	weathering	and	dispersion	processes	as	well	as	
general	landform	characteristics	and	material	properties	is	a	complex	undertaking	and	can	hinder	successful	greenfields	
exploration	in	areas	where	comprehensive	datasets,	field	knowledge,	general	expertise,	or	time	are	limited.	There	are	
three	different	approaches	to	terrain	classification	(summarised	in	Gozzard	(2005))	–	landscape	criteria	(based	on	physi-
cal	attributes;	e.g.,	association	of	geology,	soils	etc.),	genetic	(based	on	underlying	causal	factors;	e.g.,	RED	scheme	
–	residual,	erosional,	depositional),	and	parametric	(quantitative,	classification	based	on	selected	attributes;	e.g.,	based	
on	spatial	feature	layers).	The	latter	is	often	lauded	as	being	an	approach	unbiased	by	humans.	However,	while	the	Next	
Gen	Analytics	models	are	intended	to	have	little	direct	human	input	(e.g.,	we	do	not	include	available	geological	or	regolith	
maps),	there	is	an	inherent	human	bias	in	the	parametric	approach,	due	to	assumptions	relating	to	appropriate	input	data.	
Our	input	spatial	feature	layers	were	chosen	based	on	an	understanding	of	genetic	and	landscape	criteria	models	and	
how	these	may	affect	soil	sample	characteristics	in	relation	to	metal	mobility	in	the	near	surface	(<30	cm	depth).	The	main	
considerations	for	input	layers	were	(a)	indication	of	parent/source	material	(radiometric	data),	(b)	general	landscape	posi-
tion	(DEM),	(c)	the	depth	of	transported	cover	(MrVBF),	and	(d)	regolith	material	type	(Sentinel-2	derived	regolith	band	
ratios),	mainly	relating	to	clay	and	iron	oxide	content.	
	 There	are	many	other	spatial	feature	layers	(both	remotely	sensed	and	human-interpreted)	which	may	be	useful	
depending	on	site	and	commodity	specific	exploration	needs.	However,	the	Next	Gen	Analytics	workflow	was	designed	for	
first-pass,	greenfields	exploration	with	little	knowledge	of	a	given	area.	In	addition,	we	exclusively	use	publicly	available	
data,	to	enable	application	anywhere	on	the	Australian	continent	with	a	resolution	of	30	m.	The	workflow	identifies	clusters	
of	pixels	with	similar	feature	properties	without	explicit	consideration	for	the	geographical	location,	geochemistry,	or	soil	
properties	at	each	point,	and	without	further	human	influence.	It	is	important	to	note	that	the	model	output	shown	here	
(Fig.	6A)	has	not	been	adjusted	to	fit	the	ideal	number	of	different	landscape	clusters,	but	was	limited	to	eight	clusters	to	
demonstrate	the	concept	in	comparison	to	the	available	simplified	regolith	map	(Fig.	6B).		
	 The	machine	learning-derived	landscape	map	is	not	amenable	to	description	using	concise	nomenclature	that	would	
fit	neatly	into	available	regolith	classification	schemes.	Hence,	we	simply	refer	to	them	here	as	numbered	landscape	clus-
ters	and	their	designated	colour.	This	may	present	an	initial	challenge	for	human	interpretation.	However,	it	also	presents	
an	opportunity,	as	it	allows	for	classification	based	on	measurable	properties	of	the	regolith	material	rather	than	forcing	a	
generalised	landscape	type	into	a	rigid	classification	scheme.	The	clusters	are	not	internally	homogeneous	(may	consist	
of,	e.g.,	sandplain	in	one	area	and	grade	into	alluvial	materials	in	other	parts)	but	they	do	have	recurrent	characteristics	
that	reflect	the	spatial	feature	input	layers.	The	spatial	feature	layer	with	the	greater	relative	variance	has	the	most	influ-
ence.	This	is	in	line	with	the	model	assumption	that,	where	a	deviation	in,	e.g.,	depth	of	cover,	is	large,	this	will	influence	
the	ability	of	a	given	element	to	migrate	into	surface	materials.	On	the	other	hand,	where	a	region	is	relatively	uniform	in	
depth	of	cover,	but	the	material	has	vastly	different	regolith	band	ratio	signals	(related	to	clay	and	iron	oxide	content)	this	
should	be	considered	as	to	its	effect	on	metal	mobility.	A	brief	overview	of	likely	materials	and	main	features	observed	for	
each	cluster	are	noted	in	parentheses	in	the	legend	in	Fig.	6A,	and	is	derived	in	consultation	with	input	feature	layers	and	
available	surface	geology	and	regolith	maps	as	we	did	not	complete	on-the	ground	validation	for	this	specific	site.
	 Comparing	the	eight	machine	learned	landscape	clusters	(Fig.	6A)	to	the	eight	regolith	landforms	on	the	publicly	avail-
able	map	(Fig.	6B)	indicates	that	the	machine	learning	approach	has	defined	clusters	with	similar	spatial	distributions	to	
regolith	landforms	in	the	available	map	product.	For	example,	landscape	cluster	5	(light	blue;	Fig.	6A)	has	a	similar	distri-

continued on page 14
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Fig. 6: Comparison of human characterisation and machine-learned characterisation of regolith over the Kingston area.  (A) Simplified 
regolith landform map (de Souza Kovacs and Jakica 2021) derived via human interpretation. (B) Machine learned proxy-landform map 
based on remotely sensed spatial features. The clusters are not amenable to nomenclature that directly aligns with existing regolith 
classification schemes. We indicate in brackets some main features observed for each landscape cluster.

bution	to	what	is	mapped	as	sandplain	in	the	available	regolith	landform	map	in	the	vicinity	of	the	Yilgarn	Craton	granites	
(Fig.	6B).	This	is	not	surprising	given	lithological	controls	relating	to	greenstone	and	granitic	bedrock	on	regolith	materials	
are	evident	in	surface	geochemical	results,	which	are	reflected	in	the	spatial	feature	layers	(e.g.,	radiometric	data)	and	
therefore	affect	the	machine	learned	landscapes.	However,	major	differences	can	be	observed.	This	is	partly	due	to	the	
100	m	resolution	and	the	lack	of	smoothing	in	the	machine	learned	approach,	and	partly	due	to	the	choice	of	input	layers.	
For	example,	in	the	centre-left	of	the	project	area	where	one	unit	is	mapped	as	sandplain	material	in	the	simplified	regolith	
landform	product	(light	yellow;	Fig.	7B),	the	machine	learning	approach	has	assigned	two	clusters	in	this	setting	(light	blue	
and	light	yellow	in	Fig.	7A).	While	both	of	these	clusters	likely	do	indicate	sandplain	material,	the	more	traditional	regolith	
landform	map	does	not	take	into	account	the	change	in	depth	of	cover	(from	the	relatively	deeper	light	grey	to	the	rela-
tively	shallower	grey	of	the	MrVBF;	Fig.	7D),	nor	the	material	composition	related	to	clay	and	iron	oxide	content	(relatively	
more	blue	vs.	relatively	more	yellow	colours	in	Fig.	7C).	Topographic	(DEM,	Fig.	7E)	and	radiometric	(Fig.	7F)	information	
was	consulted	in	the	human-interpreted	landform	map	and	is	well	represented	in	both	outputs.	However,	the	change	in	
regolith	composition,	in	this	case,	does	not	relate	to	K,	Th	and	U	(radiometric	data)	but	iron	oxide	and	clay	content	(Senti-
nel-2	derived	regolith	band	ratios).
	 In	the	case	of	the	Kingston	map	sheet,	a	host	of	information	on	landform	and	regolith	materials	has	been	collected	
from	remotely	sensed	and	physical	observations.	However,	there	are	many	areas	where	no	or	very	limited	regolith	land-
form,	surface	geology	or	regolith	material	maps	exist,	and	the	Next	Gen	Analytics	approach	is	a	cost-effective	and	rapid	
method	to	generate	a	first-pass	landscape	map	for	greenfields	exploration.	In	addition,	no	physical	observations	are	re-
quired,	and	the	resolution	is	usually	30	m.	Pye	et al.	(2000)	also	noted	introduced	human	errors	which	may	have	skewed	
their	geochemical	statistics,	such	as	samples	that	were	thought	to	have	been	collected	over	greenstones	but	were	instead	
likely	to	have	been	located	over	granites.	The	machine	learning	workflow	aims	to	reduce	the	influence	of	human	bias	and	
error	and	provides	a	more	consistent	and	objective	landscape	model.

continued on page 15
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Fig. 7: Comparison of machine learned model to regolith landform map and the parameters used to generate the model.
While we would consider a landscape model with more clusters as more appropriate for the Kingston area owing to its size (Fig. 5;) the 
usefulness of a model needs to be considered in terms of the exploration context and its application. This includes which features are 
likely to influence geochemical soil analytical results and the number of samples in each landscape type (for statistical outlier calcula-
tion, we consider the minimum number to be 50 samples per cluster). It is important to note when assessing geochemical data, that we 
group the regolith into classes of similar materials to be able to understand whether an elevated geochemical result in a surface soil is 
anomalous (and, therefore, potentially related to bedrock geology via dispersal mechanisms or supergene enrichment in the cover itself) 
or simply a variation in background material composition.

Outliers by landscape type
	 The	goal	of	the	Next	Gen	Analytics	landscape	modelling	demonstrated	above	is	to	normalise	geochemical	concentra-
tions	by	landscape,	so	samples	can	be	compared	across	large	areas	with	varying	landscapes.	For	this	purpose,	statistical	
outliers	are	calculated	for	each	analysed	element	based	on	their	assigned	landscape	cluster	(coloured	boxes	in	Fig.	8B).	
By	separating	samples	by	landscape,	we	can	assess	them	in	separate	sub-populations.	For	example,	if	we	consider	the	
distribution	of	Cu	concentrations	over	the	Kingston	area	(Fig.	8A)	we	might	conclude	that	the	largest	values	are	observed	
near,	or	close	to,	the	greenstone	belts	(similar	to	observations	by	Pye	et al.	2000	on	historic	geochemical	results).	When	
identifying	traditional	outliers	from	the	whole	sample	population	(displayed	as	white	triangles	associated	with	the	white	box	
on	the	left-hand	side	in	Fig.	8B)	this	interpretation	is	confirmed	with	one	outlier	located	over	each	greenstone	belt	(Fig.	
8C).	However,	this	approach	does	not	consider	whether	elevated	metal	concentrations	are	recorded	in	samples	that	were	
collected	in	residual	or	transported	landscape	settings.	If	mineralisation	is	present,	the	mobile	element	signature	might	

continued on page 16
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Fig. 8: Different ways of interpreting the same soil survey on the example of Cu. (A) Cu concentrations in ppm displayed based on natu-
ral breaks in the data. All data displayed was analysed via UltraFine+®. (B) Boxplots of the whole population (white box) broken down 
into sub-populations (coloured boxes) based on landscape clusters. (C) Location of whole population outliers. (D) Location of additional 
outliers coloured by sub-population. Note that the whole population outliers are still represented when viewed by sub-population.

continued on page 17
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have	a	much	weaker	geochemical	signal	in	samples	collected	in	transported	(depositional)	landscape	settings	compared	
to	residual	settings.	Therefore,	when	the	whole	sample	population	is	broken	down	by	different	landscape	settings	(co-
loured	boxes	in	Fig.	8B),	each	sub-population	can	be	assessed	individually,	highlighting	potential	anomalies	within	differ-
ent landscape settings.
	 In	general,	the	Cu	outliers	(triangles)	below	the	dashed	line	(Fig.	8B)	are	often	considered	unremarkable	(background	
concentration	values)	if	evaluated	as	part	of	the	whole	population.	However,	when	evaluated	based	on	landscape	context,	
there	are	two	additional	Cu	outliers	in	the	cluster	7	sub-population	in	depositional	settings	(sandplain	and	sheetwash,	
royal	blue	box	in	Fig.	8B	and	royal	blue	outliers	in	Fig.	8D).	The	single	Cu	outlier	in	the	light	brown	population	on	the	other	
hand,	is	located	in	residual	or	shallow	cover	and	is,	as	expected,	well	represented	by	outliers	in	the	overall	sample	popu-
lation	(compare	white	box/triangles	with	light	brown	triangle	above	the	dashed	line	in	Fig.	8B).	Outliers	in	the	royal	blue	
sub-population	extend	one	of	the	potential	targets	in	the	whole	population	and	an	additional	potential	target	is	identified	in	
the	yellow	sub-population	(Fig.	8D).	
	 In	an	area	where	exploration	has	largely	focussed	on	locations	over	known	greenstone	belts,	which	have	generally	el-
evated	background	elemental	signatures	(e.g.,	Ni,	Pb	and	Zn;	Pye	et al.	2000)	interpreting	assays	by	landscape	type	can	
supply	additional	information	to	upgrade	or	downgrade	traditional	targets	(Fig.	9).	Similar	to	observations	in	the	historic	
data,	whole	population	outliers	for	Ni	over	the	Kingston	area	are	spatially	associated	with	greenstone	belts	(white	triangles	
in	Fig.	9A	and	B).	Most	of	these	potential	targets	are	confirmed	when	the	data	is	assessed	by	sub-population	providing	
more	confidence	as	to	their	anomalous	character.	However,	one	outlier	is	“downgraded”	(no	longer	an	outlier	in	its	sub-
population;	Fig.	9B)	while	other	outliers	are	now	evident	in	sub-populations	sampled	in	sandplain	materials	(Fig.	9C).
	 This	approach	is	intended	as	a	first-pass	geochemical	data	interpretation	in	greenfields	settings	with	mixed	cover.	It	
is	highly	encouraged	that,	once	an	area	for	follow-up	exploration	is	identified,	all	available	landscape/landform	informa-
tion	including	field	observations	and	human	interpretation	as	well	as	geochemical	and	other	soil	property	results	(e.g.,	
sizing,	spectral	mineralogy	and	pH)	be	reviewed.	Dependent	on	availability	and	target	commodity,	the	Next	Gen	Analytics	
approach	can	also	be	adjusted	to	include	different	spatial	features.	Where	soil	sample	density	permits,	it	is	always	recom-
mended	to	adjust	the	number	of	clusters	to	fit	the	degree	of	landscape	complexity.

Future developments
	 The	UltraFine+®	soil	analytical	method	is	commercially	available	and	has	to	date	been	used	by	over	160	companies	
in	Australia	and	has	already	expanded	into	a	handful	of	international	settings.	Comparison	of	assay	results	to	historic	
samples	has	shown	improvements	of	effective	detection	limits	as	well	as	more	repeatable	and	therefore	more	reliable	
results	of	a	range	of	exploration	relevant	mobile	phases	in	shallow	cover.	The	Next	Gen	Analytics	approach	is	currently	
an	R&D	project	product,	which	is	not	yet	commercially	available.	However,	it	has	been	tested	on	over	40	sites	in	Australia	
and	early	test	work	in	New	Zealand	shows	promising	approaches	for	international	settings.	
	 The	full	Next	Gen	Analytics	workflow	currently	reads	in	exclusively	UltraFine+®	data.	This	is	in	part	due	to	how	the	
projects	supporting	the	development	have	evolved,	as	well	as	its	commonly	greater	mobile	element	sensitivity	compared	
to	other	common	methods,	as	fewer	data	points	below	the	detection	limit	enables	more	sound	statistical	data	interpreta-
tion.	UltraFine+®	also	provides	additional	soil	properties	relating	to	particle	size,	pH	and	mineralogy	which	is	part	of	the	
Next	Gen	Analytics	data	package.	This	R&D	data	package	provides	three	different	landscape	models	with	4,	8	and	12	
landscape	clusters	for	each	site.	This	provides	a	standardised	output	that	can	be	used	for	first-pass	interpretation	to	
indicate	how	much	influence	landscapes	may	have	on	statistical	outlier	calculations.	Each	data	package	for	a	given	site	
contains	CSV,	GeoTIFF,	PNG	and	shapefiles	of	outliers	by	(as	well	as	independent	of)	landscape	type,	soil	property	data,	
exploration	indices,	principal	component	analysis	of	geochemical	data,	and	DEM-derived	source	and	dispersion	direc-
tions.	The	data	package	also	includes	the	Digital	Sample	Observer;	an	HTML-based	prototype	dashboard	still	under	de-
velopment	that	allows	the	explorer	to	easily	view	and	interrogate	all	available	products	within	the	data	package	(Fig.	10).
	 Using	machine	learning-derived	landscape	models	to	interpret	soil	geochemical	data	by	landscape	type	does	not	re-
place	the	need	for	in-depth	regolith	knowledge	of	an	exploration	area,	but	rather	it	provides	a	low-cost	and	low-impact	tool	
in	early	stages	of	greenfields	exploration	to	minimise	time	and	effort	while	maximising	outputs,	ideally	preventing	overlook-
ing	targets	and	walking	away	from	potentially	prospective	ground.	
	 Future	research	will	focus	on	refining	the	approach	to	address	limitations	such	as	the	influence	of	built-up	areas,	
densely	wooded	areas,	and	sample	density.	Ideally,	this	machine	learning	approach	will	be	targeted	towards	a	specific	
exploration	area	and	commodity,	and	will	benefit	from	tailored	input	layers,	depending	on	specific	exploration	questions	
with	a	view	to	extending	our	knowledge	of,	and	incorporating,	local	dispersion	mechanisms.	This	may	include	a	range	of	
different	or	additional	feature	layers,	such	as	other	geophysics	(magnetics,	electromagnetics),	and/or	high-resolution	com-
pany-owned	data.	The	workflow	will	also	be	adjusted	to	other	international	settings	(e.g.,	temperate	and	glacial	terrains)	
addressing	challenges	in	availability	of	regolith	and	landscape	maps	across	the	globe,	as	well	as	tailoring	to	different	
commodities	and	incorporating	locally	available	spatial	feature	layers.	Ideally,	machine	learning	approaches	for	landscape	
context	will	be	incorporated	in	earlier	exploration	stages	such	as	during	prospectivity	reconnaissance	and	sample	cam-

continued on page 19
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paign	design.	All	of	these	aspects	
are	currently	being	investigated,	
and	research	over	the	coming	de-
cades	will	undoubtedly	increase	
confidence	in	these	models,	intro-
ducing	them	as	a	standard	output	
during	the	exploration	process.	

Fig. 10: Screenshot of the Digital 
Sample Observer for the Kingston 
project area. Top row (from left to 
right): Reduced spatial feature layer 
data in 2-dimensional space, RGB 
coloured (the more similar the colour 
of pixels, the more similar the spatial 
feature properties for these pixels) 
and the resulting three landscape 
models with 4, 8 and 12 landscape 
classes. Middle row (from left to 
right): Reduced spatial feature layer 
data in 3-dimensional space fol-
lowed by surface geology, regolith 
geology and satellite imagery for 
comparison to the models. Bottom 
row (from left to right): Spatial feature 
layers (radiometric data, Sentinel-2 
derived regolith band ratios, DEM and 
MrVBF) used to derive the landscape 
models. Data toggles on the right-
hand-side allow for viewing outliers 
by or independent of landscape type, 
as well as all other data products, in 
landscape context.
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thors,	owns	UltraFine+®	and	this	is	licenced	to	LabWest	as	the	current	commercial	provider.	The	CSIRO	(not	the	authors)	
receives	a	financial	royalty	for	this	licence	and	subsequent	UltraFine+®	analyses.
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