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INTRODUCTION

	 Significant	under-	or	over-estimation	of	assay	parameters	can	occur	when	incorrect	laboratory	assay	methods	are	
used	(e.g.,	Abzolov	2008;	Anderson	2020;	Meuzelaar	et al.	2021).	The	cost	of	re-analysis	can	be	very	high	when	such	
errors	are	repeated	over	the	scale	of	thousands	of	samples.	Machine	learning	algorithms	can	offer	a	low-cost	alternative	
to	expensive	re-analysis;	a	small	subset	of	samples	can	be	re-analyzed,	and	an	algorithm	trained	to:	1)	recognize	
relationships	between	the	corrected	parameter	and	other	assay	parameters	in	the	subset,	and	2)	estimate	corrected	
values	for	the	larger	dataset.	
	 As	a	proof-of-concept,	machine	learning	algorithms	were	applied	to	5,580	bedrock	samples	from	the	Touro	
exploration	assay	dataset	to	assess	whether	(corrected)	sulfur	values	can	be	predicted	from	the	other	assay	parameters	
in	the	dataset.	When	Atalaya	Mining,	Cobre	San	Rafael	(Atalaya)	acquired	a	majority	interest	in	the	Touro	project,	it	
inherited	multiple	legacy	assay	datasets	with	noticeable	inconsistencies	in	sulfur	assay	data.	Further	investigation	
revealed	that	the	data	were	acquired	using	laboratory	assay	methods	insufÏcient	to	digest	metamorphosed	sulfides	
(predominantly	pyrrhotite).	Machine	learning	algorithms	trained	on	a	dataset	with	correct	sulfur	data	were	able	to	derive	
a	relationship	between	other	assay	variables	which	enabled	reproducing	the	sulfur	concentrations	with	93%	accuracy.	
Predictive	success	is	largely	a	function	of:	1)	the	number	of	samples,	2)	the	number	of	assay	parameters,	and	3)	material/
deposit	geochemistry.	

GEOLOGICAL BACKGROUND

	 Proyecto	Touro	is	a	brownfield	copper	project	located	in	the	A	Coruña	province	of	the	Galicia	Autonomous	Region	in	
northwestern	Spain.	Copper	mineralization	occurs	in	metasediments	that	comprise	the	Órdenes	Complex	(Fig.	1),	in	the	
northwest	portion	of	the	Iberian	Massif,	an	
allochthonous	metamorphosed	unit	that	is	part	
of	the	Variscan	belt	of	Europe.	The	Órdenes	
Complex	consists	of	a	thick	sequence	of	
metamorphosed	turbidites	with	interbedded	
volcanic	lenses.	These	material	types	have	
undergone	extensive	metamorphism	with	
sedimentary	units	expressing	as	paragneiss	
and	volcanic	units	as	metabasites	and	
amphibolites.	Copper	mineralization	occurs	
in	the	metavolcanic	units	as	disseminated	
sulfides	within	metabasites	and	coarse	garnet	
amphibolite.	Sulfides	are	predominantly	
pyrrhotite	and	chalcopyrite,	with	lesser	pyrite.	
	 Touro	was	originally	recognized	as	a	
metamorphosed	Cu-Zn	type	volcanogenic	
massive	sulfide	(VMS)	deposit	(Badham	and	
Williams	1981;	Williams	1983).	However,	
more	recent	studies	suggest	that	the	lithologic	
setting,	morphology,	and	mineralogy	more	
closely	reflect	a	Besshi-type	(mafic-siliciclastic)
VMS	deposit	(Arias	et al. 2021),	equivalent	to	pelitic-mafic	VMS	deposits	(Shanks	et al.	2012).	Besshi-type	deposits	occur	
in	mature	oceanic	back-arc	successions	with	thick	marine	sequences	of	clastic	sedimentary	rocks	and	intercalated	mafic	
(occasionally	ultramafic)	volcanic	rocks.	The	mafic	component	consists	largely	of	volcanic	material	types	with	mid-ocean	
ridge	basalt	(MORB)-like	afÏnities.	
	 The	Touro	project	consists	of	five	separate	mineralized	zones:	Arinteiro,	Bama-Brandelos,	Vieiro,	Arca,	and	Monte	
Minas,	the	first	three	of	which	were	mined	from	1973	to	1986	(Ore	Reserves	Engineering	2018).	Mineralization	occurs	

 
Figure. 1. Location of the Touro project area in central Spain (inset) 

and detailed bedrock geological map.
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within	the	Arinteiro	antiform,	representing	the	final	deformation	episode.	The	antiform	has	NE-SW	orientation	with	its	axis	
plunging	towards	the	north.	The	lenticular	and	stratiform	nature	of	materials	reflect	seafloor	deposition	of	fine-grained	
sediments	and	turbidites,	intrusion	of	MORB	basalts,	and	concomitant	subduction/orogeny.	This	resulted	in	the	current/
final	assemblage	of	mineralized	amphibolites	(volcanic)	hosted	within	larger	bodies	of	paragneiss.	In	Arca	and	Monte	de	
Minas	zones,	massive	sulfide-style	mineralization	also	occurs	in	brecciated	rocks	below	and	near	the	lower	amphibole	
contact,	with	breccia	clasts	cemented	by	pyrrhotite.

TOURO SULFUR DATA
	 Atalaya	Mining	acquired	a	majority	interest	in	the	Touro	project	in	2015.	The	acquisition	included	various	legacy	
assay	datasets	with	parameters	obtained	using	different	methods.	Atalaya	Mining	noticed	that	sulfur	was	frequently	
underestimated,	analyzed	via	multiple	different	lab	methods,	with	concentrations	highly	inconsistent	from	database	
to	database.	Sulfur	data	are	important	from	both	an	exploration	and	environmental	perspective,	as	they	are	used	
in	understanding	ore	assemblages	and	grade,	as	well	as	long-term	waste	material	environmental	behavior	given	a	
proportion	of	waste	materials	is	likely	to	be	acid-generating.	Further	investigation	(Golder	2018)	indicated	that	seven	
different	methods	for	sulfur	analysis	had	been	employed	over	time	at	three	different	labs.	Results	were	inconsistent	
between	the	various	methods	as	each	employed	digestants	of	various	aggressiveness,	frequently	resulting	in	partial	or	
incomplete	digestion	of	variably	metamorphosed	sulfides	(Meuzelaar	et al.	2021).	Total	sulfur	by	Leco	and	ICP	aqua	
regia	(Digiprep	digestion)	were	adopted	as	acceptable	sulfur	analysis	methods	for	the	project,	because	results	suggested	
near	complete	sulfide	digestion,	consistently	higher	sulfur	assays	compared	to	the	other	methods,	and	strong	correlation	
between	the	two	methods	(Golder	2018).	
	 One	legacy	database,	with	5,880	samples	and	49	assay	parameters	(in	addition	to	sulfur)	offered	a	unique	opportunity	
to	test	the	viability	of	assessing	whether	sulfur	concentrations	could	be	predicted	from	other	assay	parameters	using	
machine	learning	algorithms.	Sulfur	values	in	this	particular	database	were	obtained	by	ICP-AES	(four-acid)	and	were	
deemed	to	be	of	sufÏcient	quality	for	this	proof-of-concept	evaluation	as	mean	sulfur	ICP-AES	concentrations	(3.4	wt.	
%)	are	8.7%	lower	than	the	preferred	Leco	and	Digiprep1	concentrations	(both	at	3.9	wt.	%).	Additionally,	scatterplots	for	
these	datasets	indicated	high	coefÏcients	of	determination	between	both	ICP-AES	and	Leco	(0.944)	and	ICP-AES	and	
Digiprep	(0.955).
	 If	successful,	the	methodology	offers	the	opportunity	to	
correct	legacy	datasets	with	misestimated	parameter	values	
without	having	to	conduct	expensive	laboratory	re-analysis.	

METHODS

Data

	 A	geochemical	dataset	from	Atalaya	Mining	containing	
5,880	samples	with	analysis	of	49	elements	was	used	for	this	
evaluation.	Samples	for	eight	different	bedrock	lithologies	
were	contained	within	the	database.	The	sulfur	values	in	the	
database	ranged	from	below	detection	(<0.01)	to	11.8	wt.%.	
A	summary	of	the	database	including	the	lithologies,	sample	
numbers,	and	median	sulfur	value	is	presented	in	Table	1.

Table	1.	Dataset	used	in	the	study

Lithology Code Number of Median Sulfur
   samples (wt.%)
 Amphibolite	 AF	 1742	 1.9
	 Garnet	Amphibolite	 AFG	 716	 3.0
	 Ca-poor	Amphibolite	 AG	 1361	 3.5
	 Breccia-Massive	Sulfide	 BSM	 32	 11.7
	 Biotitic	Schist	 DSC	 297	 4.3
	 Massive	Sulfide	 MS	 155	 5.9
	 Pelitic	paragneiss	 PG	 1305	 0.8
	 Pelitic	paragneiss	with	 PGS	 272	 10.4	
	 sulfide

1Leco	and	Digiprep	analyses	of	a	subset	of	97	fully	digested	samples	were	
used	to	assess	differences	between	ICP-AES	and	the	total-digest	analytical	
methods
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Data Preparation

	 Raw	geochemical	data	are	typically	not	fit	for	advanced	multivariate	analysis	(e.g.,	principal	component	analysis,	
machine	learning)	because	of	two	commonly	observed	properties:	the	data	are	compositional	in	nature	and	may	contain	
non-detect	or	censored	values.	Both	properties	of	the	data	require	mathematical	transformation	prior	to	the	data	being	
used.	Compositional	data	present	several	challenges	prior	to	statistical	evaluation:	1)	they	are	restricted	to	a	constant	
sum	(e.g.,	numeric	closure),	and	2)	they	are	proportional	which	means	when	one	value	changes	other	values	must	also	
change	(Grunsky	and	de	Caritat	2020).	The	issue	of	numeric	closure	may	be	addressed	with	logarithmic	ratios,	such	
as	the	centered-log	ratio	(clr)	(Aitchison	1982;	Pawlowsky-Glahn	and	Egozcue	2006),	which	was	used	in	this	study	
to	transform	the	data	from	concentrations	to	clr-transformed	values.	Censored	data	represent	values	below	a	certain	
analytical	detection	limit	(DL)	and	are	represented	as	being	less	than	a	value	(<DL;	left-censored)	or	greater	than	a	value	
(>DL;	right	censored).	No	right-censored	values	were	present	in	the	dataset	and	left-censored	values	were	imputed	with	
an	estimate	that	considers	the	composition	of	the	entire	sample	(Sanford	et al.	1993)	using	a	compositional	variant	of	
the	expectation-maximization	(EM)	algorithm	(Palarea-Albaladejo	and	Martín-Fernández	2015).	All	data	processing	was	
performed	in	the	R	statistical	computing	environment	(R	Core	Team	2017).

Statistical Methods

	 Machine	learning	methods	can	identify	patterns	and	structures	within	multivariate	datasets	that	are	difÏcult	to	discern	
with	traditional	data	exploration	methods	such	as	bivariate	scatter	plots.	The	objective	of	this	study	was	to	identify	if	an	
accurate	relationship	could	be	derived	between	sulfur	and	other	elements	in	the	database	(e.g.,	iron,	cadmium,	zinc)	such	
that	sulfur	concentrations	could	be	predicted	based	on	the	composition	of	other	elements.	The	relationship	between	sulfur	
and	other	elements	is	complex	and	highly	non-linear	based	on	the	mineral	stoichiometry	of	the	lithologic	units	of	the	Touro	
deposit. 

	 Multiple	statistical	learning	methods	were	employed	to	predict	the	sulfur	content	of	the	Atalaya	dataset.	These	
methods	included	multiple	linear	regression,	boosted	decision	trees	(BDT;	Friedman	2001),	random	forest	(RF;	Breiman	
2001),	and	artificial	neural	networks	(ANN;	Goodfellow	et al.	2016).	Each	model	was	built	inside	the	Microsoft	Azure	
Machine	Learning	Studio	(AMLS)	environment.	A	wide	range	of	model	complexity	was	chosen	from	simple	(multiple	linear	
regression)	to	advanced	(ANN)	to	evaluate	the	most	appropriate	method.	Additional	complexity	does	not	always	equal	
additional	predictive	value.	The	relative	effectiveness	of	any	particular	method	is	generally	a	function	of	both	data	density	

and	heterogeneity.	
	 Model	accuracy	was	evaluated	based	on	its	ability	to	
predict	sulfur	concentrations	in	the	dataset,	using	both	the	
mean	squared	error	(MSE)	and	coefÏcient	of	determination	(r2).	
Training	each	model	involved	hyperparameter	tuning	of	specific	
algorithm parameters to the dataset. 

	 Algorithm	results	were	interpreted	by	calculating	the	
variable	importance	for	each	model	by	using	the	permutation	
feature-importance	algorithm	built	in	AMLS	(Breiman	2001).	
Variable	importance	computes	importance	scores	by	quantifying	
the	contribution	of	a	specific	variable	(e.g.,	Cu,	Fe,	Ni	etc.)	
on	the	overall	model	performance.	In	other	words,	variable	
importance	computes	how	important	each	variable	is	in	
predicting	sulfur.

RESULTS

	 Model	predictive	accuracy	was	evaluated	by	two	metrics:	
mean	squared	error	(MSE)	and	the	coefÏcient	of	determination	
(r2).	Both	metrics	for	the	four	models	evaluated	are	presented	
in	Table	2,	which	shows	that	the	BDT	and	ANN	performed	
significantly	better	than	the	multiple	linear	regression	and	RF	
models.	The	BDT	and	ANN	models	had	very	similar	results,	
both	an	order	of	magnitude	more	accurate	than	multiple	
linear	regression	and	RF.	Because	the	BDT	and	ANN	models	
performed	better	than	multiple	linear	regression	and	RF,	only	
those	two	are	considered	in	the	remaining	discussion.
	 The	predicted	sulfur	concentrations	for	the	BDT	and	ANN	
are	presented	with	the	raw	sulfur	concentrations	in	Figure	2,	
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	 The	variable	importance	results	for	the	top	10	ranked	elements	(out	of	48	available)	are	summarized	in	Table	3	for	the	
BDT	and	ANN	models.	The	variables	are	ranked	by	their	normalized	effect	on	model	accuracy.	The	top	10	elements	for	
the	BDT	model	are	predominantly	siderophile	and	chalcophile	elements	commonly	associated	with	sulfide	minerals	(with	
Al	and	Na	the	only	two	exceptions).	The	highest	ranked	elements	for	the	ANN	model	are	more	varied	including	elements	
commonly	associated	with	sulfides	(Fe	and	Tl),	but	also	elements	associated	with	carbonates	(Ca,	Sr,	Rb,	and	U),	and	
other	lithophiles	like	Cr.		

DISCUSSION

	 The	predictive	accuracy	(Table	2)	and	variable	importance	(Table	3)	results	confirm	the	viability	of	the	approach.	The	
BDT	results,	in	particular,	are	intuitive	as	the	bulk	of	the	elements	that	are	important	in	predicting	sulfur	concentrations	
are	chalcophile	metals	that	reside	in	pyrite	and	pyrrhotite.	For	both	methods,	Fe	is	by	far	most	influential	which	is,	again,	

 

which	shows	a	graph	of	the	kernel	density	distribution	for	the	predictions	and	raw	sulfur	data	for	all	5,880	samples	from	
the	dataset.	As	can	be	seen,	a	good	approximation	for	the	raw	sulfur	distribution	is	generated	by	both	models,	except	for	
the	lower	range	of	sulfur	concentrations	(less	than	0.1	wt.	%),	where	both	models	underperformed.	Figure	2	illustrates	that	
the	BDT	model	does	a	slightly	better	job	at	predicting	low	sulfur	concentrations	than	the	ANN	model.	

Figure 2. Distribution of predicted and raw sulfur concentrations.

Table	2.	Model	Results

Model MSE r2

Multiple	Linear	Regression	 2.47	 0.66
Random	Forest 9.56	 0.22
Boosted	Decision	Trees 0.46	 0.93
Artificial	Neural	Network 0.43	 0.93
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Table	3.	Variable	importance	rank	for	Boosted	Decision	Trees	and	Artificial	Neural	Networks

 Ranking Boosted Decision Trees Artificial Neural Network 
 Element Normalized Ranking Element Normalized Ranking
	 1	 Fe	 0.234	 	 Fe	 0.283
	 2	 Cd	 0.134	 	 Sr	 0.089
	 3	 Zn	 0.109	 	 Th	 0.069
	 4	 Co	 0.064	 	 Ti	 0.068
	 5	 Ag	 0.060	 	 Tl	 0.053
	 6	 Cr	 0.054	 	 Cr	 0.046
	 7	 Al	 0.051	 	 Ca	 0.030
	 8	 Ni	 0.034	 	 Ba	 0.030
	 9	 Na	 0.030	 	 U	 0.029
	 10	 Se	 0.025	 	 Rb	 0.026

intuitive	given	it	is	the	primary	component	along	with	sulfur	in	primary	sulfide	minerals	in	Touro	metasediments	and	
metavolcanics.	The	success	of	the	approach	relies	on	the	fact	that	multi-element	mineral	chemistry	is	ultimately	governed	
by	simple	stoichiometric,	crystallographic,	and	mass	balance	rules	and	is,	therefore,	predictable.
	 The	fact	that	sulfur	in	this	dataset	is	somewhat	underestimated	(~9%	relative	to	Leco	and	Digiprep)	due	to	incomplete	
digestion	likely	indicates	that	predictive	accuracy	would	be	even	higher	had	metamorphosed	pyrrhotite	and	pyrite	
been	completely	digested	by	the	four-acid	method.	Prediction	of	sulfur	concentrations	in	this	dataset	was	intended	
as	a	proof-of-concept	for	the	machine	learning	approach.	Virtually	all	sulfur	resides	in	two	sulfide	minerals	of	similar	
composition	(e.g.,	pyrrhotite	and	pyrite).	A	simpler	approach	of	re-analyzing	sulfur	for	a	subset	of	samples	and	using	
simpler	regression	methods	based	on	sulfur	alone	was	also	tried	and	provided	similar	results.	Hence	it	should	be	noted	
that	a	multivariate	approach	is	not	always	merited	when,	in	some	cases,	simpler	approaches	will	sufÏce.	However,	in	
cases	where	parameters	are	distributed	across	multiple	mineral	groups	(e.g.,	calcium	in	carbonates,	feldspars	etc.)	the	
multivariate	approach	generally	proves	superior.	The	success	of	the	approach	is	also	dependent	on	sample	number	and	
geologic	context.	Some	datasets	are	insufÏciently	small	for	a	multivariate	approach.	Additionally,	some	datasets	reflect	
geologic	systems	where	parameters	are	distributed	more	randomly	than	others	(e.g.,	disseminated	vs.	stratabound	ore);	
such	datasets	will	require	more	samples	to	achieve	sufÏciently	high	predictive	accuracy.	
	 Finally,	multi-element	geochemistry	can	be	used	to	predict	many	other	things	using	the	machine	learning	approach.	
For	example,	the	authors	and	others	have	used	the	approach	successfully	to	predict	lithology,	alteration,	material	density,	
long-term	environmental	behavior,	ore	grade,	metallurgical	characteristics,	ore	vectors,	and	more.
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	 Welcome	to	the	fourth	and	final	EXPLORE	issue	of	2021.	This	issue	features	an	article	describing	the	use	of	machine	
learning	to	assess	whether	(corrected)	sulfur	values	can	be	predicted	from	the	other	assay	parameters	in	a	dataset.	It	
was	written	by	Tom	Meuzelaar,	Morgan	Warren,	Alice	Alex,	and	Pablo	Núñez	Fernández.
 EXPLORE	thanks	all	those	who	contributed	to	the	writing	and/or	editing	of	the	four	issues	in	2021,	listed	in	
alphabetical	order:	Alice	Alex,	Steve	Amor,	Dennis	Arne,	Al	Arsenault,	Geoffrey	Batt,	Nigel	Brand,	Christabel	Brand,	John	
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Sciarrone,	Dave	Smith,	and	Morgan	Warren.
 EXPLORE	gratefully	acknowledges	our	advertizers	for	their	financial	support	in	2021.	Below	is	the	team	that	has	
provided	readers	with	four	excellent	issues	this	year.	We	wish	all	AAG	members	and	other	readers	of	EXPLORE a 

successful	year	in	2022.
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