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Breathing new life into old assay data using machine learning methods
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INTRODUCTION

	 Significant under- or over-estimation of assay parameters can occur when incorrect laboratory assay methods are 
used (e.g., Abzolov 2008; Anderson 2020; Meuzelaar et al. 2021). The cost of re-analysis can be very high when such 
errors are repeated over the scale of thousands of samples. Machine learning algorithms can offer a low-cost alternative 
to expensive re-analysis; a small subset of samples can be re-analyzed, and an algorithm trained to: 1) recognize 
relationships between the corrected parameter and other assay parameters in the subset, and 2) estimate corrected 
values for the larger dataset. 
	 As a proof-of-concept, machine learning algorithms were applied to 5,580 bedrock samples from the Touro 
exploration assay dataset to assess whether (corrected) sulfur values can be predicted from the other assay parameters 
in the dataset. When Atalaya Mining, Cobre San Rafael (Atalaya) acquired a majority interest in the Touro project, it 
inherited multiple legacy assay datasets with noticeable inconsistencies in sulfur assay data. Further investigation 
revealed that the data were acquired using laboratory assay methods insufÏcient to digest metamorphosed sulfides 
(predominantly pyrrhotite). Machine learning algorithms trained on a dataset with correct sulfur data were able to derive 
a relationship between other assay variables which enabled reproducing the sulfur concentrations with 93% accuracy. 
Predictive success is largely a function of: 1) the number of samples, 2) the number of assay parameters, and 3) material/
deposit geochemistry. 

GEOLOGICAL BACKGROUND

	 Proyecto Touro is a brownfield copper project located in the A Coruña province of the Galicia Autonomous Region in 
northwestern Spain. Copper mineralization occurs in metasediments that comprise the Órdenes Complex (Fig. 1), in the 
northwest portion of the Iberian Massif, an 
allochthonous metamorphosed unit that is part 
of the Variscan belt of Europe. The Órdenes 
Complex consists of a thick sequence of 
metamorphosed turbidites with interbedded 
volcanic lenses. These material types have 
undergone extensive metamorphism with 
sedimentary units expressing as paragneiss 
and volcanic units as metabasites and 
amphibolites. Copper mineralization occurs 
in the metavolcanic units as disseminated 
sulfides within metabasites and coarse garnet 
amphibolite. Sulfides are predominantly 
pyrrhotite and chalcopyrite, with lesser pyrite. 
	 Touro was originally recognized as a 
metamorphosed Cu-Zn type volcanogenic 
massive sulfide (VMS) deposit (Badham and 
Williams 1981; Williams 1983). However, 
more recent studies suggest that the lithologic 
setting, morphology, and mineralogy more 
closely reflect a Besshi-type (mafic-siliciclastic)
VMS deposit (Arias et al. 2021), equivalent to pelitic-mafic VMS deposits (Shanks et al. 2012). Besshi-type deposits occur 
in mature oceanic back-arc successions with thick marine sequences of clastic sedimentary rocks and intercalated mafic 
(occasionally ultramafic) volcanic rocks. The mafic component consists largely of volcanic material types with mid-ocean 
ridge basalt (MORB)-like afÏnities. 
	 The Touro project consists of five separate mineralized zones: Arinteiro, Bama-Brandelos, Vieiro, Arca, and Monte 
Minas, the first three of which were mined from 1973 to 1986 (Ore Reserves Engineering 2018). Mineralization occurs 

 
Figure. 1. Location of the Touro project area in central Spain (inset) 

and detailed bedrock geological map.
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within the Arinteiro antiform, representing the final deformation episode. The antiform has NE-SW orientation with its axis 
plunging towards the north. The lenticular and stratiform nature of materials reflect seafloor deposition of fine-grained 
sediments and turbidites, intrusion of MORB basalts, and concomitant subduction/orogeny. This resulted in the current/
final assemblage of mineralized amphibolites (volcanic) hosted within larger bodies of paragneiss. In Arca and Monte de 
Minas zones, massive sulfide-style mineralization also occurs in brecciated rocks below and near the lower amphibole 
contact, with breccia clasts cemented by pyrrhotite.

TOURO SULFUR DATA
	 Atalaya Mining acquired a majority interest in the Touro project in 2015. The acquisition included various legacy 
assay datasets with parameters obtained using different methods. Atalaya Mining noticed that sulfur was frequently 
underestimated, analyzed via multiple different lab methods, with concentrations highly inconsistent from database 
to database. Sulfur data are important from both an exploration and environmental perspective, as they are used 
in understanding ore assemblages and grade, as well as long-term waste material environmental behavior given a 
proportion of waste materials is likely to be acid-generating. Further investigation (Golder 2018) indicated that seven 
different methods for sulfur analysis had been employed over time at three different labs. Results were inconsistent 
between the various methods as each employed digestants of various aggressiveness, frequently resulting in partial or 
incomplete digestion of variably metamorphosed sulfides (Meuzelaar et al. 2021). Total sulfur by Leco and ICP aqua 
regia (Digiprep digestion) were adopted as acceptable sulfur analysis methods for the project, because results suggested 
near complete sulfide digestion, consistently higher sulfur assays compared to the other methods, and strong correlation 
between the two methods (Golder 2018). 
	 One legacy database, with 5,880 samples and 49 assay parameters (in addition to sulfur) offered a unique opportunity 
to test the viability of assessing whether sulfur concentrations could be predicted from other assay parameters using 
machine learning algorithms. Sulfur values in this particular database were obtained by ICP-AES (four-acid) and were 
deemed to be of sufÏcient quality for this proof-of-concept evaluation as mean sulfur ICP-AES concentrations (3.4 wt. 
%) are 8.7% lower than the preferred Leco and Digiprep1 concentrations (both at 3.9 wt. %). Additionally, scatterplots for 
these datasets indicated high coefÏcients of determination between both ICP-AES and Leco (0.944) and ICP-AES and 
Digiprep (0.955).
	 If successful, the methodology offers the opportunity to 
correct legacy datasets with misestimated parameter values 
without having to conduct expensive laboratory re-analysis. 

METHODS

Data

	 A geochemical dataset from Atalaya Mining containing 
5,880 samples with analysis of 49 elements was used for this 
evaluation. Samples for eight different bedrock lithologies 
were contained within the database. The sulfur values in the 
database ranged from below detection (<0.01) to 11.8 wt.%. 
A summary of the database including the lithologies, sample 
numbers, and median sulfur value is presented in Table 1.

Table 1. Dataset used in the study

Lithology	 Code	 Number of	 Median Sulfur
			   samples	 (wt.%)
	 Amphibolite	 AF	 1742	 1.9
	 Garnet Amphibolite	 AFG	 716	 3.0
	 Ca-poor Amphibolite	 AG	 1361	 3.5
	 Breccia-Massive Sulfide	 BSM	 32	 11.7
	 Biotitic Schist	 DSC	 297	 4.3
	 Massive Sulfide	 MS	 155	 5.9
	 Pelitic paragneiss	 PG	 1305	 0.8
	 Pelitic paragneiss with	 PGS	 272	 10.4 
	 sulfide

1Leco and Digiprep analyses of a subset of 97 fully digested samples were 
used to assess differences between ICP-AES and the total-digest analytical 
methods
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Data Preparation

	 Raw geochemical data are typically not fit for advanced multivariate analysis (e.g., principal component analysis, 
machine learning) because of two commonly observed properties: the data are compositional in nature and may contain 
non-detect or censored values. Both properties of the data require mathematical transformation prior to the data being 
used. Compositional data present several challenges prior to statistical evaluation: 1) they are restricted to a constant 
sum (e.g., numeric closure), and 2) they are proportional which means when one value changes other values must also 
change (Grunsky and de Caritat 2020). The issue of numeric closure may be addressed with logarithmic ratios, such 
as the centered-log ratio (clr) (Aitchison 1982; Pawlowsky-Glahn and Egozcue 2006), which was used in this study 
to transform the data from concentrations to clr-transformed values. Censored data represent values below a certain 
analytical detection limit (DL) and are represented as being less than a value (<DL; left-censored) or greater than a value 
(>DL; right censored). No right-censored values were present in the dataset and left-censored values were imputed with 
an estimate that considers the composition of the entire sample (Sanford et al. 1993) using a compositional variant of 
the expectation-maximization (EM) algorithm (Palarea-Albaladejo and Martín-Fernández 2015). All data processing was 
performed in the R statistical computing environment (R Core Team 2017).

Statistical Methods

	 Machine learning methods can identify patterns and structures within multivariate datasets that are difÏcult to discern 
with traditional data exploration methods such as bivariate scatter plots. The objective of this study was to identify if an 
accurate relationship could be derived between sulfur and other elements in the database (e.g., iron, cadmium, zinc) such 
that sulfur concentrations could be predicted based on the composition of other elements. The relationship between sulfur 
and other elements is complex and highly non-linear based on the mineral stoichiometry of the lithologic units of the Touro 
deposit. 

	 Multiple statistical learning methods were employed to predict the sulfur content of the Atalaya dataset. These 
methods included multiple linear regression, boosted decision trees (BDT; Friedman 2001), random forest (RF; Breiman 
2001), and artificial neural networks (ANN; Goodfellow et al. 2016). Each model was built inside the Microsoft Azure 
Machine Learning Studio (AMLS) environment. A wide range of model complexity was chosen from simple (multiple linear 
regression) to advanced (ANN) to evaluate the most appropriate method. Additional complexity does not always equal 
additional predictive value. The relative effectiveness of any particular method is generally a function of both data density 

and heterogeneity. 
	 Model accuracy was evaluated based on its ability to 
predict sulfur concentrations in the dataset, using both the 
mean squared error (MSE) and coefÏcient of determination (r2). 
Training each model involved hyperparameter tuning of specific 
algorithm parameters to the dataset. 

	 Algorithm results were interpreted by calculating the 
variable importance for each model by using the permutation 
feature-importance algorithm built in AMLS (Breiman 2001). 
Variable importance computes importance scores by quantifying 
the contribution of a specific variable (e.g., Cu, Fe, Ni etc.) 
on the overall model performance. In other words, variable 
importance computes how important each variable is in 
predicting sulfur.

RESULTS

	 Model predictive accuracy was evaluated by two metrics: 
mean squared error (MSE) and the coefÏcient of determination 
(r2). Both metrics for the four models evaluated are presented 
in Table 2, which shows that the BDT and ANN performed 
significantly better than the multiple linear regression and RF 
models. The BDT and ANN models had very similar results, 
both an order of magnitude more accurate than multiple 
linear regression and RF. Because the BDT and ANN models 
performed better than multiple linear regression and RF, only 
those two are considered in the remaining discussion.
	 The predicted sulfur concentrations for the BDT and ANN 
are presented with the raw sulfur concentrations in Figure 2, 
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	 The variable importance results for the top 10 ranked elements (out of 48 available) are summarized in Table 3 for the 
BDT and ANN models. The variables are ranked by their normalized effect on model accuracy. The top 10 elements for 
the BDT model are predominantly siderophile and chalcophile elements commonly associated with sulfide minerals (with 
Al and Na the only two exceptions). The highest ranked elements for the ANN model are more varied including elements 
commonly associated with sulfides (Fe and Tl), but also elements associated with carbonates (Ca, Sr, Rb, and U), and 
other lithophiles like Cr.  

DISCUSSION

	 The predictive accuracy (Table 2) and variable importance (Table 3) results confirm the viability of the approach. The 
BDT results, in particular, are intuitive as the bulk of the elements that are important in predicting sulfur concentrations 
are chalcophile metals that reside in pyrite and pyrrhotite. For both methods, Fe is by far most influential which is, again, 

 

which shows a graph of the kernel density distribution for the predictions and raw sulfur data for all 5,880 samples from 
the dataset. As can be seen, a good approximation for the raw sulfur distribution is generated by both models, except for 
the lower range of sulfur concentrations (less than 0.1 wt. %), where both models underperformed. Figure 2 illustrates that 
the BDT model does a slightly better job at predicting low sulfur concentrations than the ANN model. 

Figure 2. Distribution of predicted and raw sulfur concentrations.

Table 2. Model Results

Model	 MSE	 r2

Multiple Linear Regression	 2.47	 0.66
Random Forest	 9.56	 0.22
Boosted Decision Trees	 0.46	 0.93
Artificial Neural Network	 0.43	 0.93
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Table 3. Variable importance rank for Boosted Decision Trees and Artificial Neural Networks

	 Ranking	 Boosted Decision Trees	 Artificial Neural Network	
	 Element	 Normalized Ranking	 Element	 Normalized Ranking
	 1	 Fe	 0.234	 	 Fe	 0.283
	 2	 Cd	 0.134	 	 Sr	 0.089
	 3	 Zn	 0.109	 	 Th	 0.069
	 4	 Co	 0.064	 	 Ti	 0.068
	 5	 Ag	 0.060	 	 Tl	 0.053
	 6	 Cr	 0.054	 	 Cr	 0.046
	 7	 Al	 0.051	 	 Ca	 0.030
	 8	 Ni	 0.034	 	 Ba	 0.030
	 9	 Na	 0.030	 	 U	 0.029
	 10	 Se	 0.025	 	 Rb	 0.026

intuitive given it is the primary component along with sulfur in primary sulfide minerals in Touro metasediments and 
metavolcanics. The success of the approach relies on the fact that multi-element mineral chemistry is ultimately governed 
by simple stoichiometric, crystallographic, and mass balance rules and is, therefore, predictable.
	 The fact that sulfur in this dataset is somewhat underestimated (~9% relative to Leco and Digiprep) due to incomplete 
digestion likely indicates that predictive accuracy would be even higher had metamorphosed pyrrhotite and pyrite 
been completely digested by the four-acid method. Prediction of sulfur concentrations in this dataset was intended 
as a proof-of-concept for the machine learning approach. Virtually all sulfur resides in two sulfide minerals of similar 
composition (e.g., pyrrhotite and pyrite). A simpler approach of re-analyzing sulfur for a subset of samples and using 
simpler regression methods based on sulfur alone was also tried and provided similar results. Hence it should be noted 
that a multivariate approach is not always merited when, in some cases, simpler approaches will sufÏce. However, in 
cases where parameters are distributed across multiple mineral groups (e.g., calcium in carbonates, feldspars etc.) the 
multivariate approach generally proves superior. The success of the approach is also dependent on sample number and 
geologic context. Some datasets are insufÏciently small for a multivariate approach. Additionally, some datasets reflect 
geologic systems where parameters are distributed more randomly than others (e.g., disseminated vs. stratabound ore); 
such datasets will require more samples to achieve sufÏciently high predictive accuracy. 
	 Finally, multi-element geochemistry can be used to predict many other things using the machine learning approach. 
For example, the authors and others have used the approach successfully to predict lithology, alteration, material density, 
long-term environmental behavior, ore grade, metallurgical characteristics, ore vectors, and more.
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	 Welcome to the fourth and final EXPLORE issue of 2021. This issue features an article describing the use of machine 
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